Выбрать главу

Правильнее было бы сказать, что Герц не открыл, а ввел это явление в физическую науку, поскольку несистематические наблюдения влияния солнечного света на электризацию лепестков простейших электроскопов встречались еще в конце восемнадцатого века. Если Герц ввел понятие фотоэффекта в науку, то сделал фотоэффект действительно научным явлением выдающийся русский физик Александр Григорьевич Столетов. Профессор Столетов заслуженно считается создателем новой волны экспериментальной физики, выразившейся прежде всего в возникновении школы естествоиспытателей Московского университета.

Исследуя влияние освещенности на возникновение заряда в проводниках и диэлектриках, Александр Григорьевич сконструировал первый в мире электровакуумный прибор, представлявший собой стеклянную трубку со впаянными электродами, из которой откачивался воздух. Поднося к трубке сильную электроразрядную лампу, ученый тут же фиксировал появление электрического тока. Если внешняя сторона фотоэффекта, в общем-то, была более-менее понятна, то внутренне содержание совершенно не соответствовало принципам классической электродинамики. Действительно, признавая существование неких «элементарных корпускул электричества в разноименном зарядовом состоянии», физика того времени предсказывала, что процесс появления заряда будет протекать наподобие раскачивания электромагнитной волной, скажем, яблони — кристаллической решетки, заполненной спелыми яблоками — электронами. На этой мысленной картинке приложение электромагнитных сил вызовет постепенный процесс роста «града» яблок-электронов по мере нарастания амплитуды раскачивания волнами света ствола — решетки.

Увы! В действительности все выглядело совершенно иным образом! Достаточно было включить источник света — и во внешней цепи тут же появлялся ток. Более того, вскоре выяснилось, что далеко не всякий свет годился для наблюдения фотоэффекта. Красный свет даже высокой интенсивности не мог «запустить» течение процесса, а вот слабый солнечный лучик вполне для этого годился. Картина вырисовывалась довольно странная, как если бы силач, раскачивал-раскачивал ствол медленными движениями, пригибая его чуть ли не до земли, и ни одного яблока не упало, а вот подошел ребенок, резко ударил небольшим молоточком — и тотчас сорвался поток плодов. В ходе многочисленных опытов Столетов вплотную подошел к решению загадки фотоэффекта, но окончательное решение здесь предстояло найти другому гению современности — Эйнштейну.

В то время прошло лишь чуть больше пяти лет после рождения кванта действия Планка, но молодой служащий патентного бюро в Берне смело взялся развивать революционную модель Планка, перенося идеи ее создателя о квантованности электромагнитной энергии на корпускулярное строение светового потока. Действительно, такой подход (кстати, известный задолго до Ньютона, с именем которого обычно связывают понятие «корпускул света») легко позволил объяснить все противоречия фотоэффекта. Достаточно было только предположить, что неделимая частичка света — фотон, выбивая электрон с поверхности металла, должен иметь определенную «пороговую энергию», и все встало на свои места.

Великий Эйнштейн

Явление фотоэффекта

Эйнштейн в 1905 году построил теорию фотоэффекта, развивая квантовые представления Планка. Эйнштейн предположил, что свет не только испускается и поглощается, но и распространяется квантами, то есть что дискретность присуща не только процессам испускания и поглощения света, но и самому свету, что свет состоит из отдельных порций — световых квантов.

Сложная волновая поверхность

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить предмет, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

АТОМ БОРА

Весь последующий период развития квантовой науки неразрывно связан с именем еще одного из «младших отцов-основателей нового взгляда на материю» — Нильса Бора (1885–1962). Этот знаменитый датский ученый начал свою научную карьеру в святом для каждого физика месте — Кавендишской лаборатории Кембриджского университета. Именно здесь молодой ученый приступил под руководством самого сэра Резерфорда к построению новых моделей атомных структур. В этот период на небосводе науки засверкал первый более-менее достоверный планетарный атом Резерфорда. Эта модель своей наглядностью, простотой и глубоким смыслом (Вселенная в атоме!) еще долго привлекала внимание публики, до сих пор (!) встречаясь в некоторых неудачных учебниках и научных популяризациях. Почему неудачных?