Выбрать главу

Получается, что в квантовой физике, усилиями многих замечательных ученых были объединены две парадоксальнейшие гипотезы начала прошлого века — Планка о квантах энергии и де Бройля о волнах материи!

Американский физик и популяризатор науки Эдвард Кондон так описывал появление новых математических образов (матриц) в аппарате квантовой механики: «Летом 25-го года, когда волновой механики еще не существовало, а матричная только-только появилась на свет, два геттингенских теоретика пошли на поклон к знаменитому Давиду Гильберту — признанному главе тамошних математиков. Бедствуя с матрицами, они захотели попросить помощи у мирового авторитета. Гильберт выслушал их и сказал в ответ нечто в высшей степени знаменательное: всякий раз, когда ему доводилось иметь дело с этими квадратными таблицами, они появлялись в расчетах „как своего рода побочный продукт“ при решении волновых уравнений.

— Так что, если вы поищете волновое уравнение, которое приводит к таким матрицам, вам, вероятно, удастся легче справляться с ними, — закончил он.

Оба теоретика решили, что услышали глупейший совет, ибо Гильберт просто не понял, о чем шла речь. Зато сам Гильберт потом с наслаждением смеялся, показывая им, что они могли бы открыть шрёдингеровскую волновую механику на шесть месяцев раньше ее автора, если бы повнимательней отнеслись к его, Гильбертовым, словам».

Так сложилась довольно любопытная ситуация, когда к окончанию первой четверти двадцатого века на физической арене начали борьбу за приоритет описания микромира сразу две квантовые теории с различными исходными концепциями. В матричной механике Гейзенберг при поддержке Бора доказывал корпускулярную природу электронов, отражая это в своих системах матриц. Совершенно иной, на первый взгляд, подход предлагал Шрёдингер при поддержке де Бройля, отражая волновую природу электрона в своем уравнении.

Подход Гейзенберга основывался на оперировании только наблюдаемыми величинами, и он в принципе не рассматривал понятие атомных траекторий. Со своей стороны, Шрёдингер тоже избегал «планетарного» смысла орбит электронов вокруг «солнечного» ядра и ограничивался абстрактным содержанием таинственной пси-функции в своем уравнении. Великий судья всех физических споров — опыт также оказался бессилен, ведь часть экспериментов обнаруживала у электрона корпускулярные, а часть — волновые свойства!

Это был период бурных дебатов, разделивших тогда еще совсем немногочисленных физиков на два непримиримых лагеря: приверженцев пионерской матричной механики и сторонников математически прозрачной волновой квантовой физики. В этой непростой ситуации главным арбитром выступил Шрёдингер, убедительно продемонстрировав в 1927 году скептикам и своим сторонникам, что обе квантовые теории в их математической сущности едины. Отсюда сразу же следовал и основной вывод о физической эквивалентности двух механик в описании боровского атома. Иначе говоря, представления матричной теории о корпускулярном образе электрона так же достоверны, как и представления волновой квантовой механики о волнах электронов.

Так закончилась стремительная «пятилетка» взлета квантовой физики, которая началась с появления волн материи де Бройля как дальнейшего развития принципа корпускулярно-волнового дуализма и закончилась разработкой основных методов и математического аппарата квантовой физики. В конце двадцатых годов прошлого века квантовая теория поражала ученых-современников стройностью и глубиной построения, но самая ее главная ценность виделась в том, что физики впервые получили в свои руки мощный научный инструмент для исследования атомных объектов. И началось все с пересмотра модели атома Резерфорда — Бора. Первая нестыковка с квантовой механикой была в понятии электронных траекторий, ведь понятие определенной траектории в микромире квантовых объектов лишено всякого смысла! Какой же новый физический образ может заменить классические «планетарные» орбиты электронов?

Тут несомненно одно — новая модель атома, так или иначе, должна основываться на принципе распределения вероятностей нахождения электрона в атоме. При этом надо учитывать, что максимальная энергия электрона (физики называют ее полной) зависит от расстояния между атомным ядром и электроном. Ну а как же само понятие электронной орбиты? Можно его видоизменить в соответствии с квантовой теорией?