Выбрать главу

На ранних стадиях созревания эмбриона все эти сегменты мозга имеют крошечные размеры. По мере развития химические маркеры разделяют мозг на большее количество частей и определяют зоны коры, ответственные за определенные аспекты зрения или языка. Группу клеток с общей функцией называют ядром. После определения всех областей мозга они растут и развиваются в определенной последовательности: от затылочной до лобной части (см. рис.). Этот процесс продолжается в детстве и подростковом возрасте (см. главу 9).

Главной целью на ранних этапах развития мозга является создание миллиардов и миллиардов новых клеток. Клетки первоначальной нервной системы многократно делятся и создают дополнительные клетки-предшественники. Эти клетки могут делиться во время движения, оставляя за собой цепочки нейронов. В процессе деления также возникают различные виды глиальных клеток{Глиальные клетки, или глия, – совокупность всех клеток нервной ткани, помимо самих нейронов. Это своего рода соединительная нервная ткань – промежуточные ее клетки, выполняющие разные полезные функции. – Прим. ред.}. Один тип глиальных клеток направляет размещение нейронов на ранних стадиях развития, протягивая длинные волокна, которые действуют как «тропы», по которым следуют нейроны.

Количество клеточных делений и тип клеток, которые они производят, жестко контролируется сочетанием химических сигналов в разных областях мозга и взаимодействием с уже существующими клетками. Добавление новых нейронов в основном завершается к 20 неделям гестационного периода эмбриона (который принято отсчитывать с первого дня последнего менструального периода матери), т.е. примерно через 18 недель после зачатия. Очень небольшое количество нейронов продолжает появляться даже в зрелом возрасте, а новые глиальные клетки формируются в течение всей жизни.

Затем клетки эмбриона начинают дифференцироваться для выполнения конкретных задач. Дифференциация происходит в несколько этапов: по мере того как задачи становятся все более специфическими, они и направляются все более четкими химическими сигналами.

На базовом уровне нейроны имеют много общего. Они получают химические сигналы посредством веществ, называемых нейротрансмиттерами, которые высвобождаются другими (специальными) нейронами. Когда молекулы нейротрансмиттера связываются с принимающими рецепторами на дендритах нейрона, возникают электрические и химические сигналы, которые могут распространяться по всему телу клетки. При достаточном количестве одновременных электрических сигналов тело клетки может генерировать электрический импульс, который используется для «общения» с другими нейронами.

Этот выходной сигнал нейрона, который называется биоэлектрическим потенциалом, передается по аксону – очень длинному и тонкому отростку нейрона, который тянется от тела нейрона, например расположенного в головном мозге, к своей цели (какому-то участку мозга или тела, например к пальцу на ноге). Каждый нейрон имеет один аксон, который часто ветвится для достижения многочисленных участков. Молекулы нейротрансмиттера находятся в специализированных локусах на концах аксонных ответвлений и высвобождаются при получении биоэлектрического импульса. Когда нейротрансмиттер связывается с рецепторами дендрита другого нейрона, тот возбуждается или подавляется – в зависимости от типа передаваемого нейротрансмиттера. Место соединения аксона передающего нейрона с дендритом принимающего нейрона называется синапсом.

Конечный этап дифференциации нервных клеток эмбриона часто зависит от взаимодействия нейронов в синапсах.

Глия (совокупность глиальных клеток) тоже принимает разные формы. Иногда глиальные клетки обволакивают проводящие аксоны, как своего рода изолирующая пластиковая оболочка электрического провода, и образуют слой под названием миелин, он способствует ускорению связи между нейронами. В других случаях глия обрамляет кровеносные сосуды и контролирует химические сигналы, поступающие в мозг и обратно. Глия также образует защитную систему мозга, обволакивая и удаляя инородные вещества и остатки отмирающих клеток. У эмбриона она тоже дифференцируется в соответствии с химическими сигналами, обычно немного позже, чем нейроны в тех же областях.