Выбрать главу

Радиус горизонта событий часто называют шварцшильдовским радиусом (автор решения Шварцшильд). Как только необходимое количество вещества уйдет под шварцшильдовский радиус, образуется горизонт событий, и это вещество оказывается в ловушке, где оно коллапсирует до самой сингулярности. А несколько замешкавшихся атомов из внешних слоев умирающей звезды так и не смогут никогда перебраться под горизонт событий и обречены вечно парить над поверхностью со шварцшильдовским радиусом.

Чтобы лучше разобраться в структуре "черных дыр", представьте себе воображаемое путешествие на космическом корабле, оборудованном большими смотровыми иллюминаторами. Используя такую "технику", можно узнать, что увидели бы бесстрашные астронавты, если бы они действительно отправились в путешествие к различным типам "черных дыр", в сами эти дыры и даже сквозь них.

Шварцшильдовские радиусы черных дыр,

обладающих разными массами

________________________________________________________________

Масса черной дыры Шварцшильдовский радиус

(радиус горизонта событий) ________________________________________________________________

1 т 13.10- 15 ангстрем

106 т 13.10- 9 ангстрем

1012 т 13.10- 3 ангстрем

1015 т 13 ангстрем

1 масса Земли 0,8 см

1 масса Юпитера 2,8 м

1 масса Солнца 3 км

2 массы Солнца 6 км

3 массы Солнца 9 км

5 масс Солнца 15 км

10 масс Солнца 30 км

50 масс Солнца 150 км

100 масс Солнца 300 км

103 масс Солнца 3.103 км

106 масс Солнца 10 световых секунд

109 масс Солнца 2,8 свет. часов

1012 масс Солнца 117 свет. дней

1015 масс Солнца 320 свет. лет

_______________________________________________________________________

Вообразим космический корабль, показанный на рисунке 128. Он снабжен двумя большими иллюминаторами. Носовой иллюминатор смотрит прямо в центр "черной дыры", а кормовой -- в противоположном направлении. Из каждого иллюминатора видна половина всего неба. Космический корабль обладает очень мощными ракетными двигателями, позволяющими ему удерживаться на разных высотах над горизонтом событий. На борту корабля находятся два астронома, которые фотографируют с различных расстояний от черной дыры все, что им видно из иллюминаторов.

Для удобства астрономы выражают свое расстояние от "черной дыры" в шварцшильдовских радиусах, а не милях или километрах (шварцшильдовский радиус -- это радиус горизонта событий). Чем массивнее "черная дыра", тем больше ее шварцшильдовский радиус. В нижеприведенной таблице приведены значения шварцшильдовского радиуса "черных дыр", обладающих разными массами (рис. 129). (Следует принять во внимание, что поперечник горизонта событий "черной дыры" -- это в точности удвоенная величина ее шварцшильдовского радиуса, а раз поперечник горизонта событий равен удвоенному шварцшильдовскому радиусу, то поперечник фотонной сферы -- это утроенный шварцшильдовский радиус).

Путешествие двух астрономов на воображаемом космическом корабле начинается с того, что этому уникальному кораблю предоставляется возможность просто падать на "черную дыру" вдоль ее радиуса. На разных этапах сближения с дырой космонавты включают мощные ракетные двигатели, которые мгновенно останавливают падение корабля. В эти моменты покоя астрономы делают два снимка - один из носового иллюминатора (вид в сторону "черной дыры"), а другой -- из кормового (вид назад на Вселенную). Корабль останавливался пять раз, и всякий раз делались две фотографии. (На рис. 130 показано, где был космический корабль относительно "черной дыры" в моменты получения снимков.) Полученные фотоснимки, согласно теоретическим расчетам, должны выглядеть следующим образом (рис. 131).

Фото А (вид издалека от черной дыры). Расстояние от "черной дыры" равно многим шварцшильдовским радиусам. "Черная дыра" выглядит отсюда как маленькое черное пятнышко в центре поля зрения носового иллюминатора.

Фото Б (вид с расстояния 5 шварцшильдовских радиусов). При взгляде с 5 шварцшильдовских радиусов угловой поперечник "черной дыры" составляет около 46o; она занимает центральную часть поля зрения носового иллюминатора. Дали Вселенной все еще видны в кормовой иллюминатор, хотя там уже заметны некоторые искажения.

Фото В (вид с расстояния 2 шварцшильдовских радиусов). При взгляде с 2 шварцшильдовских радиусов угловой поперечник "черной дыры" достигает 136o, и она закрывает большую часть поля зрения носового иллюминатора. Вид в кормовом иллюминаторе еще более искажен, чем на фото Б.

Фото Г (вид с поверхности фотонной сферы). При взгляде с фотонной сферы (1,5 шварцшильдовского радиуса) "черная дыра" заполняет все поле зрения носового иллюминатора, так что ее угловой поперечник равен 180o. Вид назад также чрезвычайно искажен, особенно по краям поля зрения.

Фото Д (вид с высоты в несколько метров над горизонтом событий). Прямо над горизонтом событий носовой иллюминатор сплошь черный. Кажущиеся "края" "черной дыры" теперь заполняют со всех сторон кормовой иллюминатор. Видимая через него внешняя Вселенная сжалась теперь в небольшой кружок с центром в направлении от "черной дыры".

На очень больших расстояниях от "черной дыры" сама дыра выглядела как маленькое пятно света в середине носового иллюминатора (рис. 131, А). Окружающее небо оставалось практически неискаженным, за одним важным исключением. Все звезды во Вселенной посылают хоть немного света в окрестности фотонной сферы. Этот свет кружит вокруг "черной дыры" раз-другой или больше, а затем его траектория раскручивается спиралью навстречу космическому кораблю. Поэтому астроном, проводящий наблюдения через носовой иллюминатор, видит многократные изображения всех звезд Вселенной, обрамляющие видимый "край" "черной дыры". (Чтобы рисунки 131, А-Д не получились перегруженными, все эти многократные изображения опущены.) Таким образом, вид неба около "черной дыры" будет весьма сложным и искаженным.

Рис. 131, Б показывает, что будет видно с расстояния в 5 шварцшильдовских радиусов. Так как космический корабль в этом случае находится вблизи "черной дыры", она представляется большей, чем на рис. 131, А. На расстоянии в 5 шварцшильдовских радиусов (что соответствует расстоянию 150 км, если "черная дыра" имеет массу в 10 солнечных масс) угловой поперечник дыры равен примерно 56o. Вид же из кормового иллюминатора остается практически неискаженным. С расстояния в 2 шварцшильдовских радиуса (60 км от черной дыры в 10 раз более массивной, чем Солнце) "черная дыра" -- основной объект в небе перед космическим кораблем. Ее угловой поперечник увеличился уже до 136o (рис. 131, В). Все видимое вокруг нее из носового иллюминатора небо чрезвычайно сильно искажено и заполнено многократными изображениями огромного количества звезд и галактик. Даже из кормового иллюминатора небо наблюдается уже сильно искаженным. С "высоты" фотонной сферы (45 км от "черной дыры" в 10 раз массивней Солнца) изображение "черной дыры" занимает все поле зрения носового иллюминатора космического корабля, как видно на рисунке 131, Г. По краям поля зрения кормового иллюминатора теперь видны бесчисленные многократные изображения.

По мере дальнейшего приближения космического корабля к горизонту событий "черная дыра" начинает просматриваться по краям поля зрения кормового иллюминатора. Вся внешняя Вселенная видна теперь как маленький кружок в центре кормового иллюминатора (рис. 131, Д). Размеры этого кружка определяются углом раствора конуса выхода. На самом горизонте событий (это примерно в 30 км от центра черной дыры в 10 раз более массивной, чем Солнце), где конус схлопывается, все звезды неба собираются в одной точке в центре поля зрения кормового иллюминатора.