Выбрать главу

The military influence comes in at this level. The military provides jobs for a vast number of scientists and engineers, perhaps one quarter or even one half worldwide. Although a few military-funded scientists are able to do “pure research,” it is in areas of potential interest to the military, such as theoretical nuclear physics rather than sustainable agriculture.

The social location of most scientists and engineers who are not employed directly by the military is still quite convenient for military purposes. Most university and industry scientists and engineers are highly specialised in their training and work: they cannot readily switch from mechanical engineering to microbiology or vice versa. They are generally well-paid, see themselves as professionals and work among peers. As a group of workers who are mainly highly specialised, professionally oriented employees, most scientists and engineers are receptive to doing work where there is ample funding. They are trained and employed as technicians, namely to solve technical puzzles, and not to explore in depth who benefits and loses from their work. The funded research has to be in their field, so that their specialised skills can be brought to bear; it has to be sufficiently well funded, in keeping with their professional status; and it has to be recognised as acceptable by their peers.

The military can take advantage of this situation. Much military R&D requires highly specialised skills. The military has plenty of money to pay for research. Finally, military funding is acceptable to a good proportion of scientists and engineers. Most corporations are happy to have military funding, and so are most universities.[16] Most scientists and engineers are happy to accept whatever funding is available. There are also some who actively solicit military support, proposing projects that will appeal to military funders.[17]

Occasionally, though, there is opposition by scientists to military research. The most prominent case concerned the Strategic Defense Initiative (SDI), otherwise known as “star wars,” promoted by the US government. SDI was announced in 1983 during a massive mobilisation of the peace movement, and was clearly an attempt to undermine opposition to US government and military agendas. Thousands of scientists, seeing SDI as a continuation of the arms race, refused to seek or accept funding for SDI projects.[18]

However, this was an exceptional case, and even so there were plenty of scientists who were quite willing to take money for SDI, often with the rationalisation that they would use the money for their own research purposes. Critics saw SDI as both technically infeasible and militarily provocative. Many of those who signed the pledge against receiving SDI funding were not opposed to military funding for research in areas not related to SDI; indeed, many were seeking or in receipt of military funding.

As noted, SDI was an exception, linked to the strong antinuclear popular sentiment at the time. In most cases, there is no attempt at a boycott, and only a minority of scientists refuse military largesse on an individual level. For example, the cream of western physicists joined the Manhattan Project during World War II to produce the first nuclear weapons — of course with the honourable motivation of defeating an evil enemy — and there has been no shortage of scientists to produce hydrogen bombs, antipersonnel weapons and instruments of torture. When the Nazis took power in Germany in the 1930s, there was very little political resistance from the German physics community even though top scientists were dismissed and pressured to emigrate.[19]

Groups that might challenge military priorities in a fundamental fashion, such as peace movements, some churches, some trade unions and some political movements, seldom have the resources to fund scientific research, much less large-scale technological development. The technically trained labour force is mainly available to those groups that can afford to pay for it. The military is in an excellent position to do so. Even when scientists and engineers are working for industry and universities, or are unemployed, they provide a reserve labour force of experts of potential value for military purposes.[20]

Belief Systems

Technology is shaped in various ways by systems of belief, or ideology to use another expression. At a basic level, it is necessary for a considerable number of people to believe in their society’s superiority in order to justify killing members of other societies, either in defending against attack or in launching one. Underlying the existence of the military is the assumption that it is legitimate to use technology to defend a society by force, including these days mass killing of enemy soldiers and civilians. Technology is a means to achieve a widely shared aim.

Belief systems do not arise out of thin air. Education systems, cultural traditions, enforcement of ideological orthodoxy and a host of other mechanisms are involved. How beliefs influence technological development, and vice versa, is often hard to figure out. This topic is far too big to deal with fully here, so a few examples will have to suffice.

In the 1920s, most aeroplanes were made of wood but fully metal construction was heavily researched. The switch to metal aeroplanes occurred before there was much evidence of their superiority, arguably because of beliefs about science and progress. Metal symbolised both science and progress, hence far more effort was expended developing and justifying metal aeroplanes than improving wooden ones.[21]

During the Vietnam war, US planners conceptualised the war in terms of science, technology, bureaucracy and management. These were all areas in which the US was superior, hence defeat was unthinkable. The conceptualisation of the war as technological led to the deployment of sophisticated weapons, contributed to the enormous human and environmental impact of the war (two million Vietnamese deaths), and helped obscure the real reasons for US defeat.[22]

In the case of the Strategic Defense Initiative, there were massive military funding influences on scientific research, but just as important were ideological factors. The massive funding boom for star wars helped to draw corporations into service to the US military and to weaken opposition to US military policy, especially by promoting the idea that this was a “defence” system. Thus, although star wars never came close to achieving its technological ambitions, it “worked” in both economic and political senses.[23] On a wider scale, it can be argued that the US Cold War vision of global power on the basis of automated, centralised control both shaped the development of computers and was sustained by both the technology and symbolism of computers.[24]

Suppression of Challenges

Military funding, military applications and the training and employment of scientists and engineers are all influences that shape science and technology to be selectively useful for military purposes. Another influence operates in a different way, by negative rather than positive reinforcement: when a development occurs that challenges military priorities, it may be subject to attack. This process is not always straightforward, so it is worth looking at a few examples. In each of these cases, military influence is one among a number of influences on science and technology.

вернуться

16.

On university-military links, see Annals of the American Academy of Political and Social Sciences, Vol. 502, March 1989; David Dickson, The New Politics of Science (New York: Pantheon, 1984), chapter 3; Jonathan Feldman, Universities in the Business of Repression: The Academic-Military-Industrial Complex and Central America (Boston: South End Press, 1989); Daniel S. Greenberg, The Politics of Pure Science (New York: New American Library, 1971); Stuart W. Leslie, The Cold War and American Science: The Military-Industrial-Academic Complex at MIT and Stanford (New York: Columbia University Press, 1993); Christopher Simpson (ed.), Universities and Empire: Money and Politics in the Social Sciences During the Cold War (New York: New Press, 1998); Clark Thomborson, “Role of military funding in academic computer science,” in David Bellin and Gary Chapman (eds.), Computers in Battle — Will They Work? (Boston: Harcourt Brace Jovanovich, 1987), pp. 283-296.

вернуться

17.

Bruno Vitale, “Scientists as military hustlers,” in Issues in Radical Science (London: Free Association Books, 1985), pp. 73-87.

вернуться

18.

David Cortright, Peace Works: The Citizen’s Role in Ending the Cold War (Boulder: Westview Press, 1993), pp. 179-186; Steve Nadis, “After the boycott: how scientists are stopping SDI,” Science for the People, No. 20, January-February 1988, pp. 21-26.

вернуться

19.

Alan D. Beyerchen, Scientists under Hitler: Politics and the Physics Community in the Third Reich (New Haven, CT: Yale University Press, 1977). I thank Mary Cawte for mentioning this reference.

вернуться

20.

On scientists as a reserve labour force see Chandra Mukerji, A Fragile Power: Scientists and the State (Princeton, NJ: Princeton University Press, 1989).

вернуться

21.

Eric Schatzberg, “Ideology and technical choice: the decline of the wooden airplane in the United States, 1920-1945,” Technology and Culture, Vol. 35, No. 1, January 1994, p. 34-69.

вернуться

22.

James William Gibson, The Perfect War: Technowar in Vietnam (Boston: Atlantic Monthly Press, 1986).

вернуться

23.

Vincent Mosco, “The military information society and ’star wars’,” in The Pay-Per Society: Computers and Communication in the Information Age (Toronto: Garamond, 1989), pp. 131-172, also published in revised form as “Strategic offence: star wars as military hegemony,” in Les Levidow and Kevin Robins (eds.), Cyborg Worlds: The Military Information Society (London: Free Association Books, 1989), pp. 87-112.

вернуться

24.

Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America (Cambridge, MA: MIT Press, 1996).