Выбрать главу

• усилить информационный сигнал до уровня надёжной работы последующих устройств;

• преобразовать сигнал ошибки слежения из импульсной формы (видеосигнал постоянного тока с бесконечным спектром частот) в сигнал переменного тока со значительно сокращенным диапазоном частот.

Выходной сигнал предварительно го усилителя имеет сложную форму и содержит в себе множество гармонических колебаний, в том числе и первую гармонику частоты сканирования, которая в дальнейшем используется в качестве информационного сигнала об ошибке слежения за целью.

Для выделения первой гармоники и применяют последовательное сокращение диапазона частот сигнала ошибки слежения с помощью предварительного усилителя, избирательного усилителя, амплитудного детектора, усилителя коррекции СКЦ.

Рис. 27. Спектральное преобразование сигнала ошибки слежения

4. Схема автоматической регулировки усиления представляет собой отрицательную обратную связь, изменяющую коэффициент усиления предварительных усилителей и тем самым стабилизирующую параметры сигнала ошибки при изменении мощности принимаемого излучения.

Таким образом, тепловое излучение цели и помех, сфокусированное объективом, проецируется в виде пятен малого размера на диски модуляторов соответственно основного и вспомогательного каналов фотоприёмника.

Благодаря тому, что диски модуляторов размещены в фокальных плоскостях объектива и ось их вращения совпадает с его оптической осью, положение пятна на диске однозначно характеризует угловое рассогласование между линией визирования и оптической осью объектива, т. е. ошибку слежения координатора. Благодаря вращению и специальной форме прозрачного окна дисков происходит круговое сканирование положения цели (и ЛТЦ) в пределах поля зрения ОГС и преобразование информации об ошибке слежения из пространственного вида в импульсную модуляцию теплового потока.

Охлаждаемый фоторезистор основного канала преобразует модулированный тепловой поток цели в синхронный импульсный электрический сигнал постоянного тока. Причем в длительности импульса содержится информация о величине, а во временном положении импульса в периоде сканирования — о направлении ошибки слежения за целью.

Предварительный усилитель преобразует сигнал постоянного тока в цепи фоторезистора в сигнал переменного тока, содержащий в себе первую гармонику частоты сканирования. Амплитуда сигнала частоты сканирования несёт информацию о величине, а фаза — о направлении ошибки слежения.

Охлаждение фоторезистора до температуры –196 °C позволяет не только задать спектральный диапазон излучения поражаемых целей, но и значительно повысить чувствительность фотоприёмника на фоне тепловых помех. Охлаждающее устройство фоторезистора основного канала дросселирует сжатый до 350 атм азот, хранящийся в баллоне наземного источника питания. При понижении давления азот переходит в жидкое состояние с температурой –196 °C (77 К), охлаждает фоторезистор и накапливается в специальном корпусе с набивкой. Охлаждающее устройство обеспечивает достижение заданной температуры фоторезистора за 4,5 с перед пуском и подержание её в течение 14 с после пуска.

Неохлаждаемый фоторезистор вспомогательного канала чувствителен к тепловому излучению ложных тепловых целей (ЛТЦ) и аналогично преобразует его в электрический сигнал.

Повышению качества сигнала ошибки слежения, а в целом и наведения ракеты на цель способствует и автоматическая регулировка усиления, работающая по сигналу предварительного ПУок. Сигнал ошибки слежения за целью с выхода фотоприемника основного канала поступает на схему переключения и схему ближней зоны электронного блока ОГС. Сигнал ЛТЦ с выхода фотоприемника вспомогательного канала поступает на схему переключения.

Следящая система координатора цели

Следящая система предназначена для автоматического слежения координатора за целью и на основе этого определения угловой скорости линии визирования, необходимой для реализации метода пропорционального сближения при наведении ракеты в упрежденную точку встречи с целью.

Для этого следящая система решает следующие задачи:

1. Непрерывно автоматически совмещает оптическую ось координатора (ХК) с линией визирования цели (ХВ), т. е. сводит ошибку слежения координатора к нулю (Δε → 0).

Рис. 28. К работе следящей системы координатора цели