Выбрать главу

2. Датчиком угловой скорости линии визирования является гироскопический следящий координатор цели, синусоидальный сигнал, следующий на частоте сканирования, несет в себе информацию о плоскости и величине ошибки наведения.

3. При прицеливании и пуске ракета направляется на цель, а не в упрежденную точку, поэтому ошибка наведения велика. Для ускорения её отработки программно (в зависимости от стрельбы навстречу или вдогон) увеличивается команда управления рулевым приводом, обеспечивающая быстрое придание ракете требуемого угла пеленга (между продольной осью ракеты и оптической осью координатора) в плоскости наведения.

Рис. 34. Траектория движения ЗУР по методу пропорционального движения

Рис. 35. Сигнал ошибки наведения

При одноканальном управлении полётом вращающейся относительно продольной оси ракеты информация об ошибке наведения должна следовать на частоте вращения пары рулей. Для преобразования частоты информационного сигнала используется фазовый детектор, выделяющий сигнал разностной частоты: сканирования (f2) и генератора опорных напряжений (f2 + f3), т. е. f3. Важно, что при преобразовании частоты информация о плоскости и величине ошибки наведения сохраняется.

Рис. 36. Сигнал ошибки наведения на начальном участке полёта

Для придания линейной зависимости величины управляющей силы от величины сигнала ошибки (Uфд) используется генератор линеаризации (ГЛ), вырабатывающий синусоидальное напряжение (Uгл) удвоенной частоты вращения корпуса ракеты (2f3) и определенной амплитуды.

Из суммарного сигнала (UвыхΣII) Uфд и Uгл сформируется сигнал управления рулями удвоенной частоты и переменной длительности импульсов.

Рис. 37. Преобразование сигнала ошибки наведения

Для обеспечения релейного режима работы рулей синусоидальный сигнал ошибки наведения на частоте управления должен быть преобразован в двухполярный импульсный сигнал управления рулевым приводом. Для этого используются усилитель-ограничитель и усилитель мощности, работающий в ключевом режиме. Такой сигнал управления обеспечит переброс рулей из одного крайнего положения в другое четыре раза за период вращения и разное время нахождения рулей в каждом из положений в зависимости от соотношения амплитуд Uфд и Uгл.

Рис. 38. Получение сигнала управления рулями

Под действием импульсного сигнала управления рулевой привод создаст управляющую аэродинамическую силу, уменьшающую ошибку наведения.

Так как на участке разгона ракеты эффективность аэродинамических рулей мала, то дополнительно используется пороховой управляющий двигатель (ПУД). Два сопла ПУД размещены диаметрально в плоскости, перпендикулярной рулям. Подача газа в одно из сопел регулируется той же рулевой машиной и обеспечивает создание управляющей реактивной силы, синхронной управляющей аэродинамической силе рулей.

Функционально автопилот состоит из следующих элементов:

I. Формирователь сигнала управления рулями (ФСУР).

1. Фильтр сигнала ошибки наведения:

а) синхронный фильтр;

б) динамический ограничитель.

2. Формирователь сигнала управления рулями на начальном участке траектории:

а) ФСУР по пеленгу;

б) ΣI.

3. ФСУР-1:

а) фазовый детектор;

б) генератор линеаризации;

в) ΣII;

г) фильтр.

4. ФСУР-2:

а) усилитель-ограничитель;

б) усилитель мощности.

5. Контур отрицательной динамической обратной связи:

а) датчик угловой скорости;

б) усилитель.

6. Схема смещения.

II. Рулевая машина.

III. Пороховой управляющий двигатель.

Элементы ФСУР размещены в электронном блоке ОГС, а датчик угловой скорости, рулевая машина и пороховой управляющий двигатель в рулевом отсеке.

Входными сигналами автопилота являются:

а) сигнал ошибки наведения с выхода усилителя коррекции следящего координатора цели; сигнал со статорных катушек генератора опорных напряжений;