Дальнейшим шагом вперед, по сравнению с этим элементом, является горючий элемент Трэдвелла и Баура. В этом элементе в качестве материала для кислородного электрода пользуются окисью железа, для газового электрода — железом. Электролитом служит смесь взятых в равных количествах расплавленного углекислого натрия и углекислого калия. Электролит находится в поглощенном состоянии в пористых камнях из магнезии, единственного материала, не поддающегося действию этого электролита. Каналы в этих камнях снабжены в целях отвода тока железными проволоками, сами же проволоки покрыты или окисью железа, или железной пылью. Полезный эффект элемента в форме электрической энергии Баур и Трэдвелл исчислили приблизительно в 60 %. Для элемента мощностью в 1 клв требуется кладка из магнезии в 1 м, пронизанная множеством каналов и постоянно поддерживаемая при температуре в 800°. Элемент Баура, в виду отсутствия в нем дорогих металлов с неизменяющимся электролитом и высокой производительности, представляет несомненный научный прогресс. К техническому устройству более или менее крупного элемента этого рода до сих пор однако еще не приступили.
В тесном родстве с горючими элементами стоит сжигание угольной пыли, применение которой в 1926 г. возросло с 2 1/2 до 4 млн т. В последнее время перешли к размолу угля перед его употреблением: крупная силовая станция Руммельсбург близ Берлина является лучшим примером этого. В самое последнее время американский техник Трент открыл способ изготовления угольной пыли особого свойства, так называемый «текучий твердый уголь». Уголь сначала размалывается на обычной мельнице угольной пыли до тонкости, при которой он проходит через сито с 20 отверстиями на погонный дюйм, и затем угольная пыль пропускается через мельницу, содержащую 400 кг маленьких стальных шариков, причем угольная пыль размалывается до тонкости в 300 отверстий на погонный дюйм. Стальные шарики, по данным «Химии горючих веществ», с помощью электрического вибратора непрерывно быстро перетряхиваются, совершая 60 колебаний в секунду. Эта тонкая угольная пыль по предположениям должна сгорать с такой же легкостью, как нефть в нефтяной топке. Ее подача к топкам, по словам Трента, также не представляет затруднений. Угольная пыль будет течь по трубам, нагретым минимум до 100°, благодаря чему влажность угольной пыли исчезнет. Подготовленную таким образом угольную пыль можно будет перекачивать без помощи проталкивающего ее воздуха или искусственно созданной пустоты, так как она, по-видимому, приобретет свойства жидкости. Изобретатель считает возможным в дальнейшем освободить угольную пыль от золы и, следовательно, получить беззольный материал для сжигания его в двигателях внутреннего сгорания.
Рис. 2. Гигантские сушилки для сушки бурого угля (123 трубы с 12 тарелочными сушилками).
Все эти опыты, за исключением применения угольной пыли в качестве горючего, в большинстве однако не приобрели практического значения и не нашли применения в промышленности. После того как поняли, что к загадочному веществу черного алмаза можно подойти не раньше, чем разложив его на составные части, больших успехов стали ждать от повышения эффективности угля путем экономии и от использования отдельных получаемых из него высокоценных продуктов.
Разумная бережливость должна стать лозунгом нашего времени. Если мы взглянем в настоящее время на драгоценнейшее вещество нашего материка — уголь, то нам придется с ужасом убедиться в том, что из всех продуктов именно он расходуется наиболее неэкономным образом, что он подвергается хищнической эксплуатации, ничем не отличающейся от методов средневекового лесного хозяйства. Правда, в угольном хозяйстве делаются первые шаги в направлении его рационализации; однако, если принять во внимание чудовищно разветвленное потребление черного алмаза, то эти первые попытки приходится признать совершенно недостаточными. Чтобы дать представление о расточительности, царящей в области этих незаменимых ценностей, приведем несколько дат и статистических данных.