Выбрать главу

Из всего вышеизложенного ясно, что вопрос использования ветра в энергетическом хозяйстве занял видное место в современной технике.

Получение энергии из воздуха

Проблема получения энергии непосредственно из воздуха также издавна занимала людей. Уже Аристотель знал, что в воздухе происходят явления, которые мы называем грозами. Еще вплоть до XVIII столетия молнию, в согласии с учением Аристотеля, считали воспламенением горючих паров воздуха, благодаря взрыву которых происходит гром. И лишь благодаря Франклину, который в 1752 г. изобрел громоотвод, мы знаем, что воздушная атмосфера заряжена большим количеством электричества и что молния является электрическим разрядом между двумя облаками или между землей и облаками. Монье установил однако, что и при ясном небе существует разница между атмосферой слоев воздуха, близких к земле, и других, расположенных ближе к облакам. С тех пор было выдвинуто более 50 теорий для объяснения явлений атмосферного электричества. О размере сил, участвующих при грозовых разрядах в воздушном океане, дают представление измерения напряжения, произведенные проф. Линке на различных высотах: вблизи земли оно достигает 100–150 вольт, на высоте 1 500 м общее напряжение около 120 тыс. вольт и на высоте 8 000 м — приблизительно около 190 тыс. вольт. Общее напряжение между землей и большой высотой таким образом сравнительно невелико: на высоте 10 тыс. м оно достигает максимум 200 тыс. вольт.

В статье на эту тему инженера Мюллера в журнале «Мир техники» (1924 г.) мы читаем: «Вертикальный электрический ток между атмосферой и землей достигает над Берлином и Франкфуртом-на-М., например, лишь около двух миллионных ампера на квадратный километр, над всей Швейцарией — около 0,08 ампера, над всей Германией — около одного ампера и над всей земной поверхностью — приблизительно 1 000 ампер». Идущие по воздуху, как проводнику, электрические токи таким образом даже для очень больших поверхностей обладают незначительной силой. Они могли бы быть значительнее, если бы они были объединены в металлических проводниках, но и в этом случае, как показывают уже вышеприведенные цифры, они достигли бы сравнительно небольших величин, которые практически лишены всякого значения. Чтобы получить этим путем более или менее сильные токи, пришлось бы оперировать с чудовищными по размерам поверхностями. Независимо от этого, слияние атмосферного электричества в определенные потоки лишь в том случае приобрело бы постоянный характер, если бы к месту, в котором электричество получается из воздуха, существовал постоянный приток электричества. Непонимание необходимости обеспечить постоянное стекание электричества из воздуха к определенному месту влекла за собой до сего времени неуспех большинства попыток использования атмосферного электричества. Многие изобретатели занимались и продолжают еще заниматься в настоящее время вопросом практического использования атмосферного электричества, надеясь сконструировать все еще не дающийся в руки аппарат для постоянного получения электричества из атмосферы. Удастся ли им это, — судя по результатам произведенных в этой области исследований, — представляет большой вопрос. Ибо по вычислениям проф. Руппеля, одного из лучших знатоков в вопросах атмосферного электричества, электрическая энергия, накопляющаяся над 1 кв. км, достигает 0,04 клв-ч, иначе говоря, столь ничтожной величины, что для практического получения энергии она не имеет абсолютно никакого значения.

Ганс Гюнтер мечтает об использовании молнии. В своей небольшой книжке «Мечтания техники» он, между прочим, пишет по этому поводу следующее: «Если таким образом не приходится и мечтать об использовании нормального электрического заряда атмосферы, то во время грозы дело, возможно, обстоит иначе. Электрическое поле должно быть в этом случае, как это доказывают молнии, гораздо сильнее. Следовательно, нужно предполагать, что в этом случае с помощью токособирательных проводов можно уловить гораздо более сильные токи: по крайней мере, такой же мощности, как и молнии». Ход мыслей Гюнтера правилен. Но и здесь, как общее правило, чрезвычайно преувеличивается количество получаемой при этом энергии. Что может дать укрощение молнии? Пользуясь магнитными измерениями над базальтовыми скалами, пораженными молнией, пытались вычислить силу тока и напряжения подобных разрядов. При этом получали силу тока до 10 000 ампер и напряжение до 500 000 вольт. Другие вычисления, однако слабо обоснованные, дают гораздо более высокие напряжения, например для молнии длиной в 2 км 25 млн вольт. Если мы возьмем за основу эти цифры и силу тока в 10 000 ампер, то для молнии, продолжительность которой — в лучшем случае — достигает 0,01 сек., мы получим общую энергию в 700 клв-ч. Если предположить, что во время грозы в определенной местности произошло 100 разрядов молнии — сравнительно большое число, то гроза дает в этом месте 700 клв. В году в наших широтах может быть до 30 грозовых дней, откуда следует, что, если бы можно было уловить и использовать всю энергию грозы (что практически невыполнимо), соответствующая установка в лучшем случае дала бы в год 210 000 клв. Гюнтер в заключение приходит к выводу, что получение энергии этим путем также невозможно.