В табл. 5.3 нет сочетаний значений, которые еще не выявлены. Теперь можно определить выходную информацию "черного ящика", которая выдается в пяти вариантах:
1) уравнение имеет бесчисленное множество решений (корни x1 и x2 — любые числа);
2) значения двух различных корней x1 и x2;
3) значения двух равных корней в виде x1 и дополняющей надписи о двух равных корнях;
4) надпись нет решения;
5) значение одного корня x1 с надписью, что уравнение является линейным.
Тип переменных, в которых размещаются выходные значения корней x1 и x2, — вещественный (Real). Теперь определяем входную информацию. Из исходного уравнения следует, что входной информацией являются значения трех коэффициентов a, b, c типа вещественный (Real). В ходе анализа формул было установлено, что значения трех коэффициентов a, b, c могут принимать любые значения, что было не очевидно до анализа формул решения уравнения (например, случай a = 0).
Имена переменных будут достаточно мнемоничны, если придерживаться принятых в математике обозначений.
Окончательный комментарий сути действий всей программы: "Программа решения квадратного уравнения a*x*x + b*x + c = 0 с произвольными значениями коэффициентов a, b, c типа вещественный". Факт произвольности значений коэффициентов a, b, c на этапе предварительного выявления сути действия "черного ящика" еще не был выявлен.
Наконец, готовим тестовые примеры.
Совокупность тестов для всех выявленных случаев решения квадратного уравнения:
1) при a = 0, b = 0, c = 0 бесчисленное множество решений (корни x1 и x2 — любые числа);
2) при a = 2, b = 3, c = —2 значения двух различных корней x1 = —2 и x2 = 0,5;
3) при a = 1, b = 4, c = 4 значения двух равных корней в виде x1 = x2 = —2 и вывод дополняющей надписи о двух равных корнях;
4) при а = 2, b = 5, с = 4 вывод надписи "нет решения";
5) при a = 0, b = 2, c = —8 значение одного корня x1 = 4 с надписью, что уравнение является линейным;
6) при a = 0, b = 0, c = 2 вывод надписи "нет решения". Теперь можно сразу написать фрагмент программы, соответствующий проделанной работе:
Program Kvadrat;
{ Программа решения квадратного уравнения
вида a*x*x + b*x + c = 0 с произвольными
значениями коэффициентов a, b, c типа
вещественный }
Uses
Crt, Dos;
Var
a, b, c: Real; {Коэффициенты квадратного уравнения}
xl, x2: Real; {Корни квадратного уравнения}
begin
end.
Путем компиляции фрагмента программы на компьютере можно проверить корректность синтаксиса. Теперь подготовим макет изображения экрана монитора (рис. 5.16). На макете изображения экрана монитора символами □ отмечены поля ввода информации, а символами — поля вывода информации.
Обычно выводимая на экран информация не содержит имен переменных, но в данном случае принятые в математике имена целесообразно отобразить на экране.
Макет изображения экрана монитора также является тестом. На основе первичных тестовых примеров и организации входной и выходной информации готовится или один тест, или несколько обобщающих тестов. Все составленные тесты для решения квадратного уравнения вошли в обобщающий тест.
Разработка наглядных тестов. Для простейшего алгоритма решения квадратного уравнения первичные тесты вместе с математическими формулами уже обладают наглядностью. Продолжим составление программы решения квадратного уравнения.
Первоначально нужно выполнить действия, определенные макетом изображения на экране монитора, так как для выполнения алгоритма решения квадратного уравнения необходимы исходные данные в виде коэффициентов a, b, c. Однако вводу должен предшествовать вывод информации, поясняющей назначение программы и суть очередной вводимой порции данных. Это предопределяет первичную детализацию одиночное СЛЕДОВАНИЕ в ЦЕПОЧКУ СЛЕДОВАНИЙ. Первичное одиночное СЛЕДОВАНИЕ не может содержать входной и выходной информации. Входная информация должна либо быть введена, либо присвоена. Выходная информация по завершении программы никого не интересует. Итак, ниже представлена цепочка последовательных действий.
Рис. 5.16. Макет изображения экрана монитора
ClrScr; {Очистка экрана}
{Вывод информации о назначении программы}
WriteLn ('Программа решения квадратного уравнения');
WriteLn ('вида а*x*x + b*x + с = 0 с произвольны',
'ми значениями');
WriteLn ('коэффициентов a, b, c типа вещественный');
WriteLn;
{Ввод значений коэффициентов a, b, c}
Write ('Укажите значение коэффициента а = ');
ReadLn (a); {Ввод а}
Write ('Укажите значение коэффициента b = ');
ReadLn (b); {Ввод b}
Write ('Укажите значение коэффициента с = ');
ReadLn (с); {Ввод с}
{ Вывод проверочно-протокольной информации
о введенных значениях коэффициентов a, b, c}
WriteLn;
WriteLn ('Решается квадратное уравнение');
WriteLn (а:10:4, '*x*x + ', b:10:4, '* x + ',
с:10:4, ' = 0:'); { Само решение квадратного уравнения }
WriteLn;
Write ('Для завершения программы нажмите');
WriteLn (' любую клавишу…');
Repeat until KeyPressed; { Цикл ожидания нажатия
любой клавиши }
Действие "Очистка экрана" — артефакт реализации, а не задачи, но насколько приятнее обозревать экран без "лишней информации". Также артефактом реализации явились два последних оператора, которые обеспечивают удобство просмотра результатов работы программы. При отсутствии этих операторов и нахождении в оболочке Turbo Pascal для просмотра результатов работы программы пришлось бы вручную переключиться в окно результатов.
Написание операторов WriteLn, Write, ReadLn не вызвало затруднений благодаря заранее подготовленному макету изображения экрана монитора.
Действие "Само решение квадратного уравнения" представлено комментарием и пустой строкой, отмечающей факт добавления действий в будущем. Это объясняется тем, что решение и вывод результатов решения многовариантны, а, следовательно, действие "Само решение квадратного уравнения" нельзя представить ЦЕПОЧКОЙ СЛЕДОВАНИЙ. Многовариантность предполагает управляющие структуры.
Уточняем комментарии, операторы вывода Write и WriteLn.