Что же, собственно, доказал Гёдель и как именно доказал? В работе Гёделя имеются два основных результата. Прежде всего (мы здесь не имеем в виду тот порядок, в каком эти результаты излагаются в самой работе Гёделя) он доказывает невозможность метаматематического доказательства непротиворечивости любой системы, достаточно обширной, чтобы включать в себя всю арифметику, которое (доказательство) не использовало бы каких-либо существенно иных правил вывода, кроме тех, что используются для вывода теорем в самой рассматриваемой системе. Конечно, и такое (пользующееся более сильными в некотором смысле правилами вывода) доказательство может быть очень важным и полезным. Но все же если доказательство строится на основе правил вывода, значительно более мощных, нежели логические средства арифметического исчисления, так что уверенность в непротиворечивости используемых в доказательстве допущений будет ничуть не больше, чем расчеты на непротиворечивость арифметики, то ценность такого доказательства будет довольно-таки специфической: мы убьем одно чудовище ценой рождения другого. Во всяком случае, если это доказательство будет не финитистским, то основной пункт гильбертовской программы останется, конечно, невыполненным. Гёделевское рассуждение как раз и показывает всю беспочвенность расчетов на нахождение финитистского доказательства непротиворечивости арифметики.
Второй основной результат работы Гёделя, пожалуй, еще более неожидан и поразителен; он указывает на некоторую принципиальную ограниченность возможностей аксиоматического метода. Гёдель показывает, что система Principia Mathematica, как и всякая иная система, средствами которой можно построить арифметику, — существенно неполна. Это значит, что для любой данной непротиворечивой системы арифметических аксиом имеются истинные арифметические предложения, не выводимые из аксиом этой системы.
Это обстоятельство играет решающую роль для оценки всей работы Гёделя, и на нем стоит остановиться несколько подробнее. Математикам хорошо известны примеры общих утверждений, для которых до сих пор не найдено никакого опровергающего примера, но не найдено и доказательства. Классическим примером такого рода может служить знаменитая «теорема Гольдбаха», утверждающая, что каждое четное число можно представить в виде суммы двух простых чисел. Мы не можем указать ни одного четного числа, которое не являлось бы суммой двух простых, но у нас нет и доказательства гипотезы Гольдбаха, пригодного для всех четных чисел. Таким образом, перед нами — арифметическое утверждение, которое вполне может быть истинным, но не выводимым из аксиом арифметики. Допустим, что это действительно так (утверждать подобное мы, разумеется, не можем). Представим себе, что мы изменили или пополнили исходную аксиоматику таким образом, чтобы все истинные, но не выводимые в исходной системе предложения (к их числу относится, по сделанному только что предположению, гипотеза Гольдбаха) станут в расширенной системе выводимыми[9]. Теорема Гёделя показывает, что никакое такое расширение арифметической системы не может сделать ее полной, т. е. что даже если пополнить ее бесконечным множеством аксиом, все равно в новой системе найдутся истинные, но не выводимые (хотя и выразимые!) ее средствами предложения.
Истинность таких предложений, как мы ниже увидим, можно установить посредством некоторого метаматематического рассуждения об арифметической системе. Но такое рассуждение не удовлетворяет требованию, согласно которому исчисление должно быть, так сказать, «замкнутой системой», т. е. все доказуемые в нем истинные предложения должны быть получены как формальные следствия из аксиом внутри самого исчисления. Таким образом, аксиоматический метод как средство построения всей содержательной арифметики оказывается принципиально ограниченным.
Чтобы читателю было легче понять идею доказательства Гёделя, мы (следуя Гёделю) приведем вначале схему рассуждения, посредством которого получается логическая антиномия (противоречие), известная под названием «парадокса Ришара» (по имени описавшего ее в 1905 г. французского математика).
Возьмем какой-нибудь язык (например, русский)[10], средствами которого можно описывать и определять все чисто арифметические свойства чисел. Рассмотрим определения, которые можно сформулировать на этом языке. Ясно, что некоторые термины, относящиеся к арифметическим свойствам, нам определить явным образом все равно не удастся (с чего-то надо начать и в определениях во избежание ситуаций, известных под названиями «порочного круга» и «бесконечного спуска»), хотя, конечно, мы можем в принципе понимать смысл этих слов и без определений. Для нашей цели несущественно, какие именно термины принять в качестве исходных, неопределяемых; мы можем, например, считать, что мы понимаем смысл предложений «целое число делится на другое целое число», «целое число является произведением двух целых чисел» и т. п. Свойство быть простым числом тогда можно определить следующим образом: «не делиться ни на одно целое число, кроме самого себя и числа 1»; свойство быть точным квадратом: «быть произведением некоторого целого числа на то же число» и т. п.
Легко видеть, что каждое такое определение состоит лишь из конечного числа слов, а потому и из конечного числа букв алфавита. Поэтому мы можем ввести для таких словесных определений отношение порядка, считая одно определение предшествующим другому, если число букв, из которых состоит первое определение, меньше числа букв, составляющих второе определение; в тех же случаях, когда два определения состоят из одного и того же числа букв[11], одно из них считать предшествующим другому в обычном лексикографическом (алфавитном, словарном) порядке. Исходя из такого упорядочения можно теперь расположить все определения рассматриваемого вида в последовательность, сопоставив каждому из них единственное натуральное число — номер в этой же последовательности. Тогда самое короткое (и стоящее ранее других в алфавитном порядке) определение получит номер 1, следующее за ним в этом «словаре определений» — номер 2 и т. д.
Поскольку каждому определению теперь сопоставлено некоторое натуральное число, то может оказаться, что в некоторых случаях число, сопоставленное какому-нибудь определению, само будет обладать определяемым свойством.
Ситуация здесь в точности такова же, как в том случае, когда все слова в обычном орфографическом словаре делятся на два класса: односложные и многосложные; при этом слово «многосложное» само оказывается многосложным.
Пусть, например, определяющее выражение «не делиться ни на одно натуральное число, кроме самого себя и числа 1» оказалось в нашей последовательности на 17-м месте; ясно, что сопоставленное ему число 17 само подпадает под это определение. Пусть, с другой стороны, определяющее выражение «быть произведением некоторого натурального числа на то же самое число» получило номер 15; само число 15, очевидно, не является точным квадратом и потому данным свойством не обладает. Назовем числа, не обладающие свойствами, определяемыми предложениями, которым они соответствуют в описанной нами нумерации, ришаровыми. Таким образом, «x — ришарово число» — это просто сокращение выражения «x не обладает свойством, определяемым предложением, имеющим номер x в данной словарной последовательности определяющих предложений». (Скажем, число 17 из нашего первого примера не является ришаровым, а число 15 из второго примера — ришарово.)
9
Такое расширение можно произвести, просто присоединив эти недоказуемые предложения к арифметике в качестве новых
10
Конечно, у авторов речь шла об английском, а у самого Ришара — о французском языке. —
11
Пропуск между словами можно при этом считать особой «буквой» (например, последней в алфавите) или просто писать слова подряд, без пропусков. —