Почему же нужна столь продолжительная подготовка, чтобы привыкнуть к этой совершенной строгости, которая, кажется, должна была бы быть от природы присущей всякому нормальному уму? Это логическая и психологическая проблема, которая достойна обсуждения.
Но мы не будем останавливаться на ней; она является посторонней для нашего предмета. Я буду лишь помнить, что нам надо, из опасения не достигнуть цели, привести заново доказательства наиболее элементарных теорем и вместо той грубой формы, которую им придают, чтобы не утомить начинающих, придать такую, которая может удовлетворить ученого-математика.
Определение сложения. Я предполагаю, что предварительно была определена операция x + 1, состоящая в прибавлении числа 1 к данному числу x. Это определение, каково бы оно ни было, не будет играть никакой роли в последующих рассуждениях.
Дело идет теперь об определении операции x + a, состоящей в прибавлении числа a к данному числу x.
Предположим, что определена операция
x + (а − 1).
Тогда операция x + а будет определена равенством
x + а = [x + (а − 1)] + 1. (1)
Таким образом, мы узнаем, что такое x + а, когда будем знать, что такое x + (а − 1); а так как я вначале предположил, что известно, что такое x + 1, то можно определить последовательными «рекурренциями» операции x + 2, x + 3 и т. д.[2]
Это определение заслуживает некоторого внимания, так как оно имеет особенную природу, отличающую его от определения чисто логического; в самом деле, равенство (1) содержит бесчисленное множество различных определений, и каждое из них имеет смысл только тогда, когда известно другое, ему предшествующее.
Свойства сложения. Ассоциативность. Я утверждаю, что
а + (b + с) = (а + b) + с.
В самом деле, теорема справедлива для c = 1; в этом случае она изображается равенством
а + (b + 1) = (a + b) + 1.
А это – помимо различия в обозначениях – есть не что иное, как равенство (1), при помощи которого я только что определял сложение.
Предположим, что теорема будет справедлива для с = γ; я говорю, что она будет справедлива и для c = γ + 1; пусть, в самом деле,
(а + b) + γ = а + (b + γ);
отсюда следует
[(a + b) + γ] + l = [a + (b + γ)] + l
или в силу определения (1)
(а + b) + (γ + l) = a + (b + γ + 1) = a + [b + (γ + 1)],
а это показывает с помощью ряда чисто аналитических выводов, что теорема верна для γ + 1.
Но так как она верна для с = 1, то последовательно усматриваем, что она верна для с = 2, для с = 3 и т. д.
Коммутативность. 1. Я утверждаю, что
a + 1 = 1 + a.
Теорема, очевидно, справедлива для а = 1 путем чисто аналитических рассуждений можно проверить, что если она справедлива для а = γ, то она будет справедлива для а = γ + 1; но раз она справедлива для а = 1, то она будет справедлива и для а = 2, для а = 3 и т. д.; это выражают, говоря, что высказанное предложение доказано путем рекурренции.
2. Я утверждаю, что
a + b = b + a.
Теорема только что была доказана для b = 1; можно аналитически проверить, что если она справедлива для b = β, то она будет справедлива для b = β + 1.
Таким образом, предложение доказано путем рекурренции.
Определение умножения. Мы определим умножение при помощи равенств
a × 1 = a
a × b = [a × (b − 1)] + a. (2)
Равенство (2), как и равенство (1), заключает в себе бесчисленное множество определений; после того как дано определение а × 1, оно позволяет определить по следовательно а × 2, а × 3 и т. д.
Свойства умножения. Дистрибутивность. Я утверждаю, что
(а + b) × с = (а × с) + (b × с).
Мы проверяем аналитически справедливость этого равенства для с = 1; а потом проверяем, что если теорема справедлива для с = γ, то она будет справедлива и для с = γ + 1.
2
Термином «рекурренция» (recurrence) обозначается логическая операция возврата к своему началу. –