Выбрать главу

Другой вопрос, который Ньютон попытался решить, проблема ньютоновской гравитации заключается в ее действии на расстоянии. Силы зависят от массы объектов и от расстоянии между ними. Проблема с этим в том, что сила не имеет носителя, она действует в пустом пространстве. Также проблема в том, что она нарушает «ограничение скорости» Вселенной: ничто не может двигаться быстрее скорости света. Если объект изменил свое положение во Вселенной, силы притяжении, с которой он действует на другие объекты, мгновенно изменились бы, нарушив это ограничение скорости.

В попытке решить проблему гравитации Эйнштейн впервые придумал Специальную теорию относительности, которая учитывала только объекты, движущиеся по прямой и с постоянной скоростью. Однако она не включала ускорения, и Эйнштейн стремился создать теорию, которая могла бы применяться более широко. Так родился термин Общая теория относительности.

В начале 1900-х Эйнштейн провел мысленный эксперимент. Он смотрел в окно и представлял себе человека, падающего с крыши. Когда человек падал, он чувствовал себя невесомым. Но что если бы этот человек был в падающем лифте? Лифт будет двигаться с той же скоростью, что и человек, который также почувствует себя невесомым.

Именно тогда Эйнштейн понял, что происходит. Вопреки теории Ньютона, не было никакой гравитационной силы, тянущей объекты вниз. Вместо этого пространство вокруг них было изогнуто, подталкивая оба объекта к земле. Оно толкало, а не притягивало, как это считалось в теории притяжения Ньютона. Последствия этого открытия были удивительными. Это означало, что пространство является гибким, его можно складывать и изгибать. Эйнштейн объединил пространство и время в так называемый пространственно-временной континуум.

В то время как естественное движение вещей состоит в том, чтобы следовать простейшему пути через пространство-время, масса изгибает окружающее её пространство так, что мы движемся к центрам большей массы. Это и есть сила, которую мы называем гравитацией.

Как это описывает орбиты планет и их лун? Ньютоновская гравитация говорит, что Солнце притягивает нас к себе, но мы не падаем на него, потому что Земля также одновременно движется в сторону по эллиптической орбите. Но согласно общей теории относительности, огромная масса Солнца искажает пространство вокруг себя, и это изогнутое пространство толкает Землю к Солнцу.

Ни одно из этих изображений не является точным относительно того, как на самом деле выглядит кривизна пространства-времени — три измерения пространства, обернутые вокруг четвертого измерения (времени), — но наши умы не способны представить, как это будет выглядеть на самом деле. Поскольку мы живем в трех измерениях, мы можем представить себе только трехмерные ситуации.

Откуда мы знаем, что общая теория относительности работоспособна? Доказательства этого есть во всей Вселенной. Теория не только объясняет нейтронные звезды и аномалии орбиты Меркурия, но и правильно предсказывает черные дыры и способность гравитации сгибать свет. Звездный свет, например, искривляется, когда проходит вблизи Солнца. Еще один интересный момент со светом заключается в том, что когда он отклоняется вокруг более компактных объектов, это приводит к нескольким изображениям этого объекта. Это обычно наблюдаемое явление называется гравитационным линзированием и помогает подтвердить общую относительность.

Знаете ли вы, что время также может быть искажено? Время замедляется ближе к объектам очень большой массы. Например, для тех, кто живет в высоком небоскребе, время течет быстрее, чем для находящихся на земле. Но, эта разница очень мала, разумеется.

Теория относительности также предсказывает, что в момент зарождения нашей Вселенной она была очень горячей и плотной, что в конечном итоге привело к Большому взрыву. С тех пор мы обнаружили, что наша Вселенная расширяется гораздо быстрее, чем предсказывал Эйнштейн.

Как выразился физик-теоретик Джон Уилер, «пространство-время говорит материи, как двигаться, а материя говорит пространству-времени, как изгибаться».