Выбрать главу

В заключение рассмотрим вопрос физического взаимодействия инфракрасного излучения с телом человека. При падении светового потока на кожу часть лучистой энергии отражается, а другая часть проникает внутрь тканей, ослабляясь по мере углубления за счёт поглощения компонентами биологической ткани. Спектральная зависимость коэффициента отражения представлена на рис. 41, откуда видно, что кожа отражает только видимый и ближний инфракрасный (ИК) свет (так называемый А-диапазон ИК-излучения 0,75-1,5 мкм). В этом легко убедиться, посветив в темноте фонариком на ладонь и наблюдая отражённый свет на белом экране (стене). Инфракрасное же излучение с длиной волны более 1,5 мкм практически не отражается и поглощается тканями с эффектом обычного нагрева.

Теперь прислоним рефлектор фонарика к ладони (или загородимся ладонью от света электрической лампочки). Мы увидим, что промежутки между сомкнутыми пальцами красные. Это значит, что биологические ткани пропускают (частично) красный цвет (рис. 43). То есть красный цвет глубоко проникает под кожу. Действительно, если посветить фонариком в закрытые глаза, то отчётливо почувствуем свет, проникающий через ткань век и воспринимаемый как «свет, который мешает уснуть». Экспериментальные измерения показывают, что коэффициент поглощения тканей минимален в видимой красной и ближней (коротковолновой) инфракрасной области (в А-диапазоне ИК-излучения). Таким образом, излучение с длинами волн 0,75-1,5 мкм хорошо отражается от кожи, но в то же время неотразившаяся часть излучения глубоко проникает в ткань. Считается, что глубоко проникающее излучение обеспечивает прогрев тканей, причём мягкий и безболезненный прогрев, поскольку поглощение тепла «размыто» по большому объёму подкожной ткани и по большому количеству терморецепторов. Этому способствует и очень высокое рассеивание красного и инфракрасного излучения в тканях человека. Так, просвечивая мощным источником света ладонь, вы не сможете увидеть костей на фоне общего красного свечения. Поэтому источники света с большой долей ближнего инфракрасного излучения (Солнце, юпитеры, софиты, лампы накаливания, в том числе широко известные синие лампы-рефлекторы Минина и красные с поляризованным светом типа Биотрон) используются в физиотерапии как лечебное средство. В действительности же на значительные глубины 1–4 см проникают лишь доли процента излучения, поэтому даже когерентный красный свет в гелий-неоновой лазеротерапии поглощается преимущественно кожей, которая может воспринимать поглощенное излучение как ожог. В то же время, охлаждая кожу (водой, стеклом) и облучая её мощным ИК-излучением А-диапазона можно добиться очень интересных эффектов. Например, если облучать ванну мощным ИК-излучением А-диапазона, то можно с комфортом находиться даже в ледяной воде не замерзая. Или можно приложить к коже оптически прозрачную пластинку стекла и облучить через неё кожу импульсом очень мощного ИК-излучения А-диапазона (сотни кВт/м

2). Тогда верхний слой кожи, в котором находятся высокочувствительные терморецепторы, не успевает нагреваться из-за контакта со стеклом и не чувствует боли от ожога, но тем не менее глубинные области кожи, где располагаются луковицы волос, на мгновение прогреваются до температур порядка 70 °C. Это оказывается достаточным, чтобы погибли зародыши волос, что приводит к эффективной и безболезненной эпиляции, используемой в косметологии.