Рис. 7. Электрон - е движется по стационарной орбите вокруг ядра атома с зарядом +е. На левом рисунке наблюдатель видит движение электрона под действием внешней силы Fе На правом рисунке наблюдатель обнаружит в локально инерциальной системе прямолинейное и равномерное движение электрона.
На рисунке 7а наблюдатель находится в инерциальной системе отсчета, связанной с атомным ядром, имеющим заряд +е. Измеряя относительные координаты своей системы отсчета и ускоренной системы, связанной с электроном -е массы m он видит, что электрон движется с ускорением под действием силы Fe.
Она порождена электромагнитным полем ядра. Используя преобразования координат, наблюдатель может переместиться в ускоренную систему отсчета (см. рис. 7в). На рисунке 7в он находится в ускоренной локально инерциальной системе отсчета вблизи электрона. В этой системе отсчета он видит, что локально электрон либо покоится, либо движется прямолинейно и равномерно без вращения, поскольку локально внешняя сила Fe скомпенсирована силой инерции Fi. С точки зрения локального наблюдателя действие на электрон какого-либо поля отсутствует, что и указывает на относительность электромагнитного поля.
Из наших рассуждений можно прийти к выводу, что в геометризированной электродинамике возможно ускоренное движение по «инерции». Для этого заряженной частице достаточно двигаться согласно уравнениям геодезических пространства Римана. Причем это пространство должно быть образовано множеством относительных координат ускоренных локально инерциальных систем отсчета, связанных с зарядами. Поэтому в геометризированной электродинамике существование стационарных орбит электронов в поле ядра (квантовый принцип Бора) есть следствие ускоренного движения зарядов по инерции.
Этот вывод подтверждает догадки А. Эйнштейна о возможности найти более совершенную квантовую теорию путем расширения принципа относительности. В самом деле, появление стационарных орбит у электрона в геометризированной электродинамике обеспечено расширением специального принципа относительности электродинамики Максвелла-Лоренца-Эйнштейна до общего принципа относительности.
1.9. Вращательная относительность и вращательные координаты.
В повседневной жизни мы наблюдаем два типа движений тел - поступательные и вращательные. Например, автомобиль, который движется по горизонтальной поверхности, движется поступательно. Движение колес автомобиля относительно его корпуса является вращательным. Поступательное движение тел описывается в физике поступательными координатами х, у и z. Для описания вращательного движения используют вращательные координаты ф1, ф2, ф3 (ими могут быть углы Эйлера).
Механика Ньютона, электродинамика Максвелла-Лоренца-Эйнштейна, теория гравитации Эйнштейна и геометризированная электродинамика построены так, что используемые этими теориями системы отсчета образуют множество относительных поступательных координат (см. таблицу № 1). В таблице также указаны относительные физические величины, причем каждая более сложная теория включает в себя все предыдущие относительные величины и добавляет свои. Например, в электродинамике Максвелла-Лоренца-Эйнштейна, которая использует четырехмерные инерциальные системы отсчета, кинетическая энергия равномерного движения зарядов относительна, так же как и в механике Ньютона. Но в ней дополнительно оказываются относительными длина объекта и время его жизни. В теории гравитации Эйнштейна и геометризированной электродинамике относительно все то, что и в электродинамике Максвелла-Лоренца-Эйнштейна, плюс относительными оказываются гравитационные и электромагнитные поля соответственно.
Таблица № 1.
Легко видеть, что в эту таблицу не входят вращательные координаты ф1, ф2, ф3. Это и понятно, поскольку все перечисленные в таблице системы отсчета по определению не вращаются. Поэтому можно сказать, что до сих пор теория относительности развивалась как теория поступательной относительности.
Следующий шаг в развитии теории относительности потребовал введения многообразия относительных координат ускоренных систем отсчета, которые испытывают вращение при своем движении. Такие системы отсчета движутся не только в трансляционных координатах, но также и во вращательных. Теория, в которой используются вращательные координаты, требует увеличения размерности пространства событий. Например, если рассматриваются трехмерные вращающиеся системы отсчета с трансляционными координатами х, у и z, то они дополнительно описываются тремя вращательными координатами. В этом случае пространство событий шестимерно. Если же мы будем рассматривать четырехмерные вращающиеся системы отсчета, то пространство событий будет уже десятимерным, поскольку в четырехмерном пространстве трансляционных координат х, у, z, ct имеется шесть вращательных координат: три пространственных угла ф1, ф2, ф3 и три псевдоевклидовых угла q1, q2, q3.