Выбрать главу

Рис. 22. Удвоение цикла-аттрактора

Изложенная выше теория Пуанкаре — Андронова потери устойчивости состояний равновесия имеет так много приложений во всех областях теории колебаний (как систем с конечным числом степеней свободы, так и сплошных сред), что нет никакой возможности их здесь перечислить: механические, физические, химические, биологические и экономические системы теряют устойчивость на каждом шагу.

Рис. 23. Бифуркация рождения тора вблизи цикла

В работах по теории катастроф мягкая потеря устойчивости положения равновесия обычно называется бифуркацией Хопфа (отчасти по моей "вине", так как, рассказывая о теории Пуанкаре — Андронова Р. Тому в 1965 г., я особенно подчеркивал работу Э. Хопфа, перенесшего часть этой теории на многомерный случай).

Рис. 24. Бифуркация коразмерности 2 вблизи резонанса 1 : 3

В теории бифуркаций, как и в теории особенностей, основные результаты и приложения получены независимо от теории катастроф. Несомненной заслугой теории катастроф является введение термина аттрактор и широкая пропаганда знаний о бифуркациях аттракторов. Разнообразные аттракторы обнаружены теперь во всех областях теории колебаний; высказывалась, например, гипотеза, что различные фонемы речи — это различные аттракторы звукообразующей динамической системы.

Рис. 25. Вариант бифуркации коразмерности 2 вблизи резонанса 1 : 4

При медленном изменении параметра наблюдается качественно новое явление затягивания потери устойчивости (рис. 26).

Рис. 26. Затягивание потери устойчивости при динамической бифуркации

После того как параметр прошел через бифуркационное значение, соответствующее рождению цикла, т. е. мягкому возникновению автоколебаний, система остается в окрестности потерявшего устойчивость состояния равновесия еще некоторое время, за которое параметр успевает измениться на конечную величину. И лишь затем система скачком переходит на родившийся в момент бифуркации автоколебательный режим, так что потеря устойчивости кажется жесткой.

Интересно, что этот эффект — особенность динамической бифуркации — имеет место только в аналитических системах, В бесконечно-дифференцируемом случае величина затягивания потери устойчивости, вообще говоря, стремится к нулю при уменьшении скорости изменения параметра.

Затягивание в модельном примере описано Шишковой в 1973 г. Доказательство того, что это явление имеет место во всех типичных аналитических системах с медленно меняющимся параметром, было получено в 1985 г. А. И. Нейштадтом.

Рис. 27. Колебания численности популяции в простейших мальтузианской модели с учетом конкуренции

Известно, что улов горбуши колеблется с периодом два года. Исследование экологических моделей, призванных объяснить эти колебания, привело А. П. Шапиро (1974) и затем Р. Мея к экспериментальному открытию каскадов удвоений периода: последовательные бифуркации удвоения быстро следуют одна за другой, так что на конечный отрезок изменения параметра приходится бесконечное число удвоений. Это явление наблюдается, например, для простейшей модели мальтузианского размножения с конкуренцией — для отображения х → Ахе (рис. 27). Здесь множитель е, уменьшающий коэффициент мальтузианского размножения А при увеличении размера популяции х, учитывает конкуренцию. При малых значениях параметра А устойчива неподвижная точка х = 0 (популяция вымирает). При больших значениях А аттрактором последовательно становятся ненулевая неподвижная точка (бифуркация А0), цикл периода 2, рис. 27, как для горбуши (бифуркация удвоения, А1) периода 4 (А2) и т. д. (рис. 28).

Рис. 28. Каскад удвоений периода

Анализируя этот экспериментальный материал, М. Фейгенбаум (1978) обнаружил замечательное явление универсальности каскадов удвоений. Последовательность значений параметра, соответствующих последовательным удвоениям, асимптотически ведет себя как геометрическая прогрессия. Знаменатель прогрессии

является универсальной (не зависящей от конкретной системы) постоянной, вроде чисел π или ε. Такие же каскады удвоений предельных циклов наблюдаются и в типичных эволюционных системах, описываемых зависящими от параметра дифференциальными уравнениями.

В отличие от удвоения периода, утроение является явлением коразмерности два. Каскады утроений (и других увеличений периода) становятся типичными не в однопараметрических, а в двупараметрических семействах систем. В этих случаях универсальные показатели оказываются комплексными.