Выбрать главу

Схема большинства применений теории катастроф такая же, как в описанных примерах. Предполагается, что изучаемый процесс описывается при помощи некоторого числа управляющих и внутренних параметров. Состояния равновесия процесса образуют поверхность того или иного числа измерений в этом пространстве. Проекция поверхности равновесий на плоскость управляющих параметров может иметь особенности. Предполагается, что это — особенности общего положения. В таком случае теория особенностей предсказывает геометрию "катастроф", т. е. перескоков из одного состояния равновесия в другое при изменении управляющих параметров. В большинстве серьезных приложений особенность — это сборка Уитни, а результат был известен до провозглашения теории катастроф.

Приложения описанного типа бывают более или менее обоснованными в зависимости от степени обоснованности исходных посылок. Например, в теории хлопков упругих конструкций и в теории опрокидывания кораблей предсказания теории полностью подтверждаются экспериментом. С другой стороны, в биологии, психологии и социальных науках (скажем, в приложениях к теории поведения биржевых игроков или к изучению нервных болезней) как исходные предпосылки, так и выводы имеют скорее эвристическое значение.

5. Бифуркации положений равновесия

Эволюционный процесс математически описывается векторным полем в фазовом пространстве. Точка фазового пространства задает состояние системы. Приложенный в этой точке вектор указывает скорость изменения состояния.

В некоторых точках вектор может обращаться в нуль. Такие точки называются положениями равновесия (состояние не меняется с течением времени). На рис. 10 изображено фазовое пространство системы, описывающей взаимоотношение хищника и жертвы (скажем, щук и карасей). Фазовое пространство — положительный квадрант плоскости. По оси абсцисс отложено число карасей, по оси ординат — щук. Точка Р — положение равновесия. Точка А соответствует равновесному количеству карасей при количестве щук, меньшем равновесного. Видно, что с течением времени в системе устанавливаются колебания; равновесное состояние рис. 10 неустойчиво. Установившиеся колебания изображаются замкнутой кривой на фазовой плоскости. Эта кривая называется предельным циклом.

Рис. 10. Фазовая плоскость модели хищник — жертва

Кривые в фазовом пространстве, образованные последовательными состояниями процесса, называются фазовыми кривыми. В окрестности точки, не являющейся положением равновесия, разбиение фазового пространства на фазовые кривые устроено так же, как разбиение на параллельные прямые: семейство фазовых кривых можно превратить в семейство параллельных прямых гладкой заменой координат. В окрестности положения равновесия картина сложнее. Как показал еще А. Пуанкаре, поведение фазовых кривых в окрестности положения равновесия на фазовой плоскости в системе общего положения такое, как изображено на рис. 11. Все более сложные случаи превращаются в указанные при общем малом изменении системы.

Рис. 11. Типичные фазовые портреты в окрестности точки равновесия

Системы, описывающие реальные эволюционные процессы, как правило, общего положения. Действительно, такая система всегда зависит от параметров, которые никогда не бывают известны точно. Малое общее изменение параметров превращает систему необщего положения в систему общего положения.

Таким образом, все более сложные, чем указанные выше, случаи, вообще говоря, не должны встречаться в природе, и их на первый взгляд можно не рассматривать. Эта точка зрения обесценивает большую часть теории дифференциальных уравнений и вообще математического анализа, где традиционно основное внимание уделяется малоценным, но трудным для исследования случаям не общего положения.

Дело, однако, обстоит совсем иначе, если нас интересует не индивидуальная система, а система, зависящая от одного или нескольких параметров. Действительно, рассмотрим пространство всех систем (рис. 12), разделенное на области, образованные системами общего положения. Поверхности раздела отвечают вырожденным системам; при малом изменении параметров вырожденная система становится невырожденной. Однопараметрическое семейство систем изображается на рис. 12 кривой. Эта кривая может трансверсально (под ненулевым углом) пересекать границу раздела разных областей невырожденных систем.

Рис. 12. Однопараметрическое семейство как кривая в пространстве систем