Почему, можете спросить вы, нельзя было просто измерить длину прибора и посмотреть, происходило ли в действительности укорачивание в направлении движения Земли? Но ведь линейка тоже сокращается и в той же самой пропорции. Измерение дало бы такой же результат, как и при отсутствии сокращения.
На движущейся Земле все подвержено сокращению.
Положение такое же, как и в мысленном опыте Пуанкаре, в котором Вселенная внезапно становится в тысячу раз больше, но только в теории Лоренца — Фитцджеральда изменения происходят в одном-единственном направлении. Так как этому изменению подвержено все, то нет способа его обнаружить. Внутри определенных пределов (пределы устанавливаются топологией — наукой о свойствах, сохраняющихся при деформации предмета) форма столь же относительна, как и размер. Сокращение прибора, как и сокращение всего на Земле, мог бы заметить лишь тот, кто находится вне Земли и не движется вместе с нею.
Многие писатели, говоря о теории отностельности, считали гипотезу сокращения Лоренца — Фитцджеральда гипотезой ad hoc (латинское выражение, означающее «только для данного случая»), не поддающейся проверке какими-либо другими экспериментами. Адольф Грюнбаум считал, что это не вполне справедливо. Гипотеза сокращения была ad hoc только в том смысле, что в то время не было пути проверить ее. В принципе она вовсе не ad hoc. И это было доказано в 1932 г., когда Кеннеди и Торндайк экспериментально опровергли эту гипотезу.
Рой Дж. Кеннеди и Эдвард М. Торндайк, два американских физика, повторили опыт Майкельсона — Морли. Но вместо того, чтобы стремиться сделать оба плеча по возможности равными, они постарались сделать их длины максимально различными. Для того чтобы обнаружить разницу во времени, затрачиваемом светом на прохождение в двух направлениях, прибор поворачивали. В соответствии с теорией сокращения разность времен должна была изменяться при повороте. Ее можно было бы заметить (как и в опыте Майкельсона) по изменению интерференционной картины, возникающей при смешении двух пучков. Но такого изменения не обнаружили.
Наиболее просто проверить теорию сокращения можно было бы, выполнив измерения скорости пучков света, распространяющихся в противоположных направлениях: вдоль направления движения Земли и против него. Очевидно, сокращение пути не делает невозможным обнаружение эфирного ветра, если он существует. До недавнего открытия эффекта Мёссбауэра (о нем будет говориться в гл. 8) гигантские технические трудности мешали провести этот опыт.
В феврале 1962 г. на собрании Королевского общества в Лондоне профессор Христиан Мёллер из Копенгагенского университета рассказал о том, как легко можно выполнить этот эксперимент при использовании эффекта Мёсебауэра. Для этого источник и поглотитель электромагнитных колебаний устанавливают на противоположных концах вращающегося стола. Мёллер указал, что такой эксперимент мог бы опровергнуть первоначальную теорию сокращения.
Возможно, что за время печатания этой книги такой эксперимент будет выполнен.
Хотя эксперименты такого рода и не могли быть выполнены во времена Лоренца, он предусматривал принципиальную возможность их и считал вполне обоснованными предположения о том, что эти опыты, подобно опыту Майкельсона, дадут отрицательный результат. Чтобы объяснить такой вероятный результат, Лоренц сделал важное добавление к первоначальной теории сокращения. Он ввел изменение времени. Он говорил, что часы замедлялись бы под действием эфирного ветра, причем таким образом, что измеренная скорость света всегда составляла 300 000 км/сек.
Рассмотрим конкретный пример. Допустим, что у нас есть часы, достаточно точные, чтобы сделать опыт по измерению скорости света. Пошлем свет из точки А в точку Б по прямой вдоль направления движения Земли. Синхронизируем двое часов в точке А и затем передвинем одни из них в точку Б. Отметим время, когда пучок света покинул пункт А и (по другим часам) момент прибытия его в пункт Б. Так как свет двигался бы при этом против эфирного ветра, его скорость несколько уменьшилась бы, а время пробега возросло по сравнению со случаем покоящейся Земли. Вы заметили изъян в этом рассуждении? Часы, двигавшиеся из точки А в Б, также двигались против эфирного ветра. Это замедлило часы в точке Б, они несколько отстали от часов в точке А. В результате измеренная скорость света остается неизменной — 300 000 км/сек.
То же самое произойдет (утверждает Лоренц), если измерять скорость света, распространяющегося в противоположном направлении, из точки Б в А. Двое часов синхронизируются в точке Б и затем одни из них переносятся в точку А. Пучок света, распространяясь из пункта Б в А, движется вдоль эфирного ветра. Скорость пучка увеличивается, и, следовательно, время прохождения несколько уменьшается по сравнению со случаем покоящейся Земли. Однако при перенесении часов из точки Б в А их тоже «подгоните ветер. Уменьшение давления эфирного ветра разрешит часам увеличить скорость, и, следовательно, к моменту окончания эксперимента часы в точке А убегут вперед по сравнению с часами в точке Б.
И в результате скорость света опять 300 000 км/сек.
Новая теория Лоренца не только объяснила отрицательный результат опыта Майкельсона — Морли; из нее следовала принципиальная невозможность опытным путем обнаружить влияние эфирного ветра на скорость света. Ее уравнения для изменения длины и времени действуют так, что при любом возможном методе измерения скорости света в любой системе отсчета будет получаться одинаковый результат. Ясно, что физики были неудовлетворены этой теорией. Она была теорией ad hoc в полном смысле этого слова. Оказались обреченными усилия залатать дыры, возникшие в теории эфира. Нельзя представить себе пути ее подтверждения или опровержения. Физикам было трудно поверить, что, создав эфирный ветер, природа устроила все так, что обнаружить этот ветер невозможно. Английский философ-математик Бартран Рассел позднее очень удачно цитировал песенку Белого Рыцаря из книги Льюиса Кэррола «Алиса в стране чудес».
Мне хотелось бы покрасить
Бакенбарды в цвет зеленый,
В руки веер ваять побольше.
Чтобы их никто не видел.
Новая теория Лоренца, в которой изменялись и время, и длина, казалась почти столь же абсурдной, как и план Белого Рыцаря. Но, несмотря на все усилия, физики не могли придумать ничего лучшего.
В следующей главе будет показано, как специальная теория относительности Эйнштейна указала на смелый, замечательный выход из столь запутанного положения.
3. Специальная теория относительности. Часть I
В 1905 г., когда Альберт Эйнштейн опубликовал свою знаменитую статью о том, что впоследствии стали называть специальной теорией относительности, он был молодым женатым человеком 26 лет, работавшим в качестве эксперта в Швейцарском патентном бюро. Его карьера студента физики в Цюрихском политехническом институте не была блестящей. Он предпочитал читать, думать и мечтать, а не забивать свой ум несущественными фактами ради того, чтобы на экзаменах получать высокие оценки. Несколько раз он пытался преподавать физику, но оказался неважным учителем, и вынужден был оставлять работу.
В этой истории есть и другая сторона. Еще будучи маленьким мальчиком, Эйнштейн глубоко задумывался над фундаментальными законами природы.
Позже он вспоминал о двух величайших «чудесах» своего детства: о компасе, который отец показал ему, когда он был в возрасте четырех пли пяти лет, и о книге по Евклидовой геометрии, которую он прочел, когда ему было двенадцать лет. Эти два «чуда» символичны для деятельности Эйнштейна: компас — символ физической геометрии, структуры этого «огромного мира» вне нас, который мы никогда не сможем узнать абсолютно точно; книга — символ чистой геометрии, структуры, которая является абсолютно определенной, но не отражает полностью действительного мира. Уже к шестнадцати годам Эйнштейн приобрел, главным образом благодаря собственным усилиям, основательные знания по математике, включая аналитическую геометрию и дифференциальное и интегральное исчисление.