Выбрать главу

Представим себе два космических корабля А и Б.

Пусть в космосе нет ничего, кроме этих двух кораблей. Они движутся навстречу друг другу с постоянной скоростью. Имеется ли какой-нибудь способ, чтобы астронавты на любом из кораблей могли решить, какой из следующих трех случаев является «истинным» или «абсолютным»?

1. Корабль А находится в состоянии покоя, корабль Б движется.

2. Корабль Б находится в состоянии покоя, корабль А движется.

3. Оба корабля движутся.

Эйнштейн дает следующий ответ. Нет, не имеется такого способа. Космонавт на любом из кораблей может, если он хочет, выбрать корабль А в качестве неподвижной системы отсчета. Нет никаких экспериментов, включая опыты со светом или любыми другими электрическими или магнитными явлениями, которые доказали бы, что этот выбор неправилен.

То же самое справедливо, если он выберет корабль Б в качестве неподвижной системы отсчета. Если он предпочитает рассматривать оба корабля движущимися, он просто выберет неподвижную систему отсчета вне этих кораблей, точку, относительно которой оба корабля находятся в движении. Не стоит задаваться вопросом, какой из этих выборов «правилен» и какой нет. Говорить об абсолютном движении любого из кораблей — это значит говорить о чем-то не имеющем смысла. Реально только одно: относительное движение, в результате которого корабли сближаются с постоянной скоростью.

В книге такого рода невозможно углубляться в технические детали специальной теории и особенно в детали, связанные с ее математическим аппаратом.

Мы должны удовлетвориться упоминанием некоторых из наиболее удивительных следствий, которые логически вытекают из того, что Эйнштейн называет двумя «основными постулатами» своей теории:

1. Не существует способа, чтобы установить, находится тело в состоянии покоя или равномерного движения относительно неподвижного эфира.

2. Независимо от движения своего источника свет всегда движется через пустое пространство с одной и той же постоянной скоростью.

(Второй постулат не следует смешивать, как это часто делают, с постоянством скорости света по отношению к равномерно движущемуся наблюдателю. Это положение следует из постулатов.)

Другие физики, конечно, рассматривали оба постулата. Лоренц попытался примирить их в своей теории, к которой абсолютные длины и времена изменялись в результате давления эфирного ветра. Большинство физиков посчитали это слишком радикальным нарушением здравого смысла. Они предпочитали считать, что постулаты несовместимы и по крайней мере один из них должен быть несправедливым. Эйнштейн рассмотрел эту проблему более глубоко. Постулаты несовместимы только в том случае, сказал он, если мы отказываемся отбросить классическую точку зрения, что длина и время абсолютны.

Когда Эйнштейн опубликовал свою теорию, он не знал, что Лоренц думал в том же направлении, но, подобно Лоренцу, он понял, что измерения длины и времени должны зависеть от относительного движения объекта и наблюдателя. Однако Лоренц прошел только половину пути. Он сохранил понятие абсолютной длины и времени для покоящихся тел. Он считал, что эфирный ветер искажает «истинную» длину и время. Эйнштейн прошел этот путь до конца. Эфирного ветра не существует, сказал он. Нет смысла в понятиях абсолютной длины и времени. Это ключ к специальной теории Эйнштейна. Когда он его повернул, всевозможные замки начали медленно открываться.

Чтобы наглядно объяснить специальную теорию, Эйнштейн предложил свой знаменитый мысленный эксперимент. Представим себе, сказал он, наблюдателя М, который стоит около железнодорожного полотна. На некотором расстоянии по направлению движения имеется точка Б. На таком же расстоянии против направления движения имеется точка А. Пусть оказалось, что одновременно в точках А и Б вспыхивает молния. Наблюдатель считает, что эти события одновременны, так как он видит обе вспышки в одно и то же мгновение. Поскольку он находится посередине между ними и поскольку свет распространяется с постоянной скоростью, то он заключает, что молния ударила одновременно в этих двух точках.

Теперь предположим, что, когда ударяет молния, вдоль полотна в направлении от А к Б с большой скоростью движется поезд. В тот момент, когда происходят обе вспышки, наблюдатель внутри поезда — назовем его М' — находится как раз напротив наблюдателя М, стоящего около полотна. Поскольку М' движется в направлении к одной вспышке и удаляется от другой, он увидит вспышку в Б раньше, чем в А. Зная, что он находится в движении, он примет в расчет конечность скорости света и также сделает вывод, что вспышки произошли одновременно.