Выбрать главу

По словам Артура Стэнли Эддингтона, выдающегося английского астронома, который стал одним из самых первых и наиболее ревностных последователей Эйнштейна, будет казаться, что даже сигары на другом корабле тлеют дольше. Космонавт ростом в два метра, стоящий в горизонтально движущемся корабле, по-прежнему будет выглядеть двухметровым, но его тело будет казаться тоньше в направлении движения. Когда же он ляжет, вытянувшись в направлении движения корабля, восстановится нормальная ширина его тела, но теперь будет казаться, что его рост уменьшился в направлении от головы до пят.

Если бы два космических корабля действительно смогли двигаться один относительно другого со скоростью, достаточно большой, чтобы сделать подобные изменения существенными, то всевозможные трудности технического характера не позволили бы наблюдателям на каждом корабле увидеть эти изменения. Писатели любят пояснять теорию относительности упрощенными эффектными примерами. Эти цветистые иллюстрации не описывают изменений, которые действительно можно было бы наблюдать либо человеческим глазом, либо с помощью любых приборов, известных в настоящее время. О существовании этих изменений космонавты смогли бы в принципе узнать на основе измерений, если бы были достаточно хорошие измерительные приборы.

В дополнение к изменениям длины и времени имеется также релятивистское изменение массы.

Масса, грубо говоря, — это мера количества вещества в теле.

Свинцовый и пробковый шары могут иметь одинаковые размеры, но свинцовый шар более массивен. Концентрация вещества в нем выше.

Существует два способа измерения массы тела: либо взвешиванием, либо по тому, насколько велика сила, необходимая, чтобы сообщить этому телу определенное ускорение. Первый метод не очень хорош, поскольку получаемые результаты зависят от силы тяжести в данном месте. Свинцовый шар, поднятый на вершину высокой горы, будет весить несколько меньше, чем у ее подножия, хотя его масса останется в точности той же самой. На Луне его вес был бы значительно меньше, чем на Земле. На Юпитере же его вес оказался бы значительно больше.

Второй метод измерения массы дает одинаковые результаты независимо от того, проводились они на Земле, на Луне или на Юпитере; однако при использовании этого метода сразу же возникают курьезные вопросы. Чтобы определить этим методом массу движущегося тела, нужно измерить силу, которая необходима для сообщения ему определенного ускорения. Ясно, что для того, чтобы заставить катиться пушечное ядро, необходим более сильный толчок, чем для пробкового шара. Масса, измеренная таким методом, называется инертной массой в отличие от гравитационной массы или веса. Подобные измерения не могут быть выполнены без измерений времени и расстояний. Инертная масса пушечного ядра, например, выражается через величину силы, необходимой для увеличения его скорости (расстояние в единицу времени) на столько-то в единицу времени. Как мы видели ранее, измерения времени и расстояний меняются с изменением относительной скорости тела и наблюдателя. Как следствие этого меняются также результаты измерений инертной массы.

В гл. 6 мы вернемся к понятию гравитационной массы и ее связи с инертной массой. Здесь же пойдет речь только об инертной массе, полученной в результате измерений, выполняемых каким-либо наблюдателем. Для наблюдателей, покоящихся относительно предмета, например для космонавтов, везущих в космическом корабле слона, инертная масса предмета остается одной и той же независимо от скорости корабля. Масса слона, измеряемая подобными наблюдателями, называется его собственной массой или массой покоя. Инертная масса того же самого слона, измеренная каким-либо наблюдателем, движущимся относительно этого слона (например, наблюдателем на Земле), называется релятивистской массой слона. Масса покоя тела никогда не меняется, а релятивистская масса изменяется. Оба измерения являются измерениями инертной массы.

В этой главе будет идти речь только об инертной массе; когда употребляется слово «масса», его следует понимать именно в этом смысле.

Все три переменные — длина, время, масса—охватываются одним и тем же выражением для лоренцовского сокращения

Длина и скорость хода часов меняются по одному и тому же закону, так что формула для этих величин одна и та же.

В то же время масса и длина временных интервалов меняются по обратным законам, а это означает, что формулу здесь следует написать так:

Масса любого тела, измеренная наблюдателем, движущимся равномерно относительно этого тела, получается умножением массы покоя тела на приведенное выше выражение (где v — относительная скорость объекта; с — скорость света).