Чем ближе к Солнцу, тем больше кривизна. Иными словами, структура пространства — времени в окрестности больших материальных тел становится неевклидовой. В этом неевклидовом пространстве тела продолжают выбирать возможные наиболее прямые пути, но то, что является прямым в пространстве — времени, изображается кривой линией, когда проектируется на пространство. Наш воображаемый ученый, если бы он изображал орбиту Земли на своем четырехмерном графике, представил бы ее в виде прямой линии. Мы, будучи трехмерными существами (точнее, существами, которые разделяют пространство—время на трехмерное пространство и одномерное время), видим ее путь в пространстве в виде эллипса.
Авторы, пишущие о теории относительности, часто объясняют это следующим образом. Представим себе плоский кусок резины, натянутый на прямоугольную рамку. Апельсин, положенный на этот кусок, создает впадину. Мраморный шарик, помещенный вблизи апельсина, будет скатываться к нему. Апельсин не «притягивает» шарик. Он создает поле (впадину) такой структуры, что шарик, выбирая путь наименьшего сопротивления, скатывается к нему.
Грубо (очень грубо) подобным же образом пространство — время искривляется в присутствии больших масс, таких, как Солнце. Это искривление и есть поле тяготения. Планета, движущаяся вокруг Солнца, движется по эллипсу не потому, что Солнце притягивает ее, а благодаря особым свойствам поля; в этом поле эллипс представляет собой наиболее прямой путь, по которому планета может двигаться в пространстве — времени.
Такой путь называется геодезической линией.
Это слово настолько важно в теории относительности, что его следует объяснить более подробно. На евклидовой плоскости, такой, как ровный лист бумаги, наиболее прямая линия между двумя точками есть прямая линия. Она является также кратчайшим расстоянием. На поверхности шара геодезическая линия между двумя точками есть дуга большого круга. Если натянуть веревку между этими точками, она отметит геодезическую линию. Последняя также представляет собой наиболее прямое и кратчайшее расстояние между двумя точками.
В четырехмерной евклидовой геометрии, где все измерения являются пространственными измерениями, геодезическая линия также есть кратчайшая и наиболее прямая линия, соединяющая две точки. Но в неевклидовой геометрии пространства — времени Эйнштейна это все не так просто. Имеется три пространственных измерения и одно временное измерение, объединенные согласно уравнениям теории относительности. Эти уравнения таковы, что геодезическая линия, хотя она по-прежнему остается наиболее прямым путем в пространстве—времени, есть длиннейшее, а не кратчайшее расстояние.
Это понятие невозможно объяснить, не прибегая к сложному математическому аппарату, но последний дает следующий курьезный результат. Тело, движущееся под действием только тяготения, всегда выбирает такой путь, на прохождение которого требуется наибольшее время, если последнее измеряется по его собственным часам. Бертран Рассел назвал это «законом космической лени». Яблоко падает по прямой вниз, ракета движется по параболе. Земля движется по эллипсу потому, что они «слишком ленивы», чтобы выбрать другие пути.
Именно этот закон космической лени заставляет тела двигаться в пространстве — времени так, что иногда это движение объясняют инерцией, а в других случаях тяготением. Если вы привяжете веревку к яблоку и закрутите ее по кругу, веревка не даст яблоку двигаться по прямой линии. Мы говорим, что инерция яблока натягивает веревку. Если веревка разорвется, яблоко полетит по прямой.
Нечто подобное происходит, когда яблоко падает с дерева. До того как оно упадет, ветка не дает ему двигаться по четырехмерной прямой. Яблоко на ветке покоится (по отношению к Земле), но оно движется во времени, так как непрерывно зреет. Если бы не было поля тяготения, это продвижение вдоль временной координаты изображалось бы прямой линией на четырехмерном графике. Но земное притяжение искривляет пространство — время в окрестностях яблока. Вследствие этого мировая линия яблока становится кривой. Когда яблоко срывается с ветки, оно продолжает двигаться в пространстве — времени, но (будучи ленивым яблоком) теперь выпрямляет свой путь и выбирает геодезическую линию. Мы видим эгу геодезическую линию как линию, по которой падает яблоко, и приписываем падение притяжению. Однако, если бы захотели, мы могли бы сказать, что инерция яблока, после того как оно внезапно было сброшено со своего искривленного пути, привела его на Землю.