Выбрать главу

В обоих (выделенных курсивом) придаточных предложениях слова употреблены косвенно. Поэтому каждое предложение, взятое в целом, имеет косвенное значение: им является выраженная в предложении мысль, а не его истинностное значение. В таких случаях смысл придаточного нельзя передать в самостоятельном предложении. В самом деле, предложение «Орбиты планет являются кругами» выражает иной смысл, чем то же предложение в функции придаточного. Смысл придаточного можно передать только описательным оборотом «Мысль, что орбиты планет являются кругами». Поэтому на придаточные предложения рассматриваемого вида можно смотреть как на собственные имена тех мыслей, которые выражаются соответствующими предложениями, если их брать самостоятельно. Главное предложение вместе с придаточным имеет своим смыслом одну единственную мысль, части которой сами не являются мыслями; смысл придаточного предложения составляет часть этой единой мысли. Поэтому истинность сложного предложения не включает в себя ни истинности, ни ложности придаточного предложения. Это видно на примерах. В (10) придаточное предложение (если его рассматривать как самостоятельное предложение) выражает ложную мысль, но все предложение (10) в целом истинно; в (11) придаточное предложение выражает истинную мысль и сложное предложение истинно. Это вполне понятно. Ведь мысль оказывается здесь не смыслом придаточного предложения, но его значением; поэтому-то для истинности целого безразлично, является ли эта мысль истинной или ложной (потому что значение предложения определяется только значением его частей, но не их смыслом). Такое придаточное предложение нельзя заменить предложением, имеющим то же истинностное значение, а можно заменить лишь таким, которое имеет то же косвенное значение (выражает ту же мысль). Только таким образом применимо в этом случае правило замены.

Вторую группу придаточных предложений составляют такие предложения, которые (иногда вместе с частью главного предложения) служат для образования сложных имен предметов. В качестве примера Фреге рассматривает следующее предложение:

(12) «Тот, кто[41] открыл эллиптическую форму планетных орбит, умер в нищете».

Придаточное предложение, входящее в (12), есть имя Кеплера. Слова в нем имеют прямое значение. Придаточные предложения этой группы объединяет то, что в них встречаются так называемые неопределенно указывающие выражения, которые и делают возможным связь между придаточным и главным предложением. В нашем примере таким выражением является «тот, кто». В математике и математической логике неопределенно указывающим выражениям соответствуют переменные, связанные операторами (например, оператором дескрипции и квантором общности)[42]. Неопределенно указывающие выражения не имеют значения и не выражают никакого законченного смысла.

Придаточные предложения второй группы не выражают завершенных мыслей и не обозначают истины или лжи. Смысл предложения этого вида нельзя выразить в отдельном непридаточном предложении. Применение принципа замены равнозначного на равнозначное к этому предложению означает его замену другим именем того же предмета.

Примером придаточного предложения третьей группы может быть предложение, входящее в состав следующего сложноподчиненного предложения:

(13) «Наполеон, который понял опасность, угрожавшую его правому флангу, сам повел свою гвардию в наступление на позиции неприятелях[43].

В предложениях этого рода слова имеют обычный смысл и обычное значение. Придаточное предложение выражает законченную мысль, а его значением является истина или ложь. Мысль, выражаемая всем сложно-подчиненным предложением, складывается из мысли главного предложения и мысли придаточного предложения. В данном примере две мысли соединены конъюнктивно. Поэтому значение сложного предложения определяется истинностными значениями конъюнктивно соединенных предложений. Поскольку придаточное предложение имеет обычный смысл и обычное значение, его можно заменить предложением, которое имеет то же истинностное значение[44]. Таким образом, к предложениям этого вида принцип замены применяется в своей непосредственной форме.

Сложнее дело обстоит в тех случаях, когда придаточное предложение – благодаря связи с другим предложением – выражает больше, чем взятое само по себе. Иногда в таких случаях слова в придаточном предложении берутся дважды: один раз в прямом, а другой раз в косвенном значении. Так бывает в косвенной речи после таких слов, как «воображать», «лгать» и т. п. Например, в предложении (14) «A лгал, что он видел Б»

вернуться

41 Так мы переводим определенный артикль немецкого языка.

вернуться

42 Другим примером придаточных предложений, содержащих неопределенно указывающие выражения, являются условные предложения, выражающие всеобщность, например: «Когда Солнце находится в Тропике Рака, в Северном полушарии самый короткий день» и «Если x › 0, то x + 3x › 0». В первом из предложений неопределенное указание касается времени и выражается формой настоящего времени глагола. Во втором примере неопределенно указывающей частью является переменная x. Свое учение о переменных Фреге изложил в [8]. Современная математическая логика в понимании переменных в целом следует по пути, намеченном Фреге.

вернуться

43 Имеется в виду битва при Ватерлоо.

вернуться

44 Фреге отмечает, что в отношении предложений типа (13) следует ввести следующее ограничение: у заменяющего предложения должен быть тот же субъект, что и у заменяемого. Ограничение отпадает, если допустить соединение при помощи союза «и», считая предложение (13) совпадающим по смыслу и значению с предложением «Наполеон понял опасность, угрожавшую его правому флангу, и Наполеон сам повел свою гвардию в наступление на позиции неприятеля».