В частном случае, когда масса и энергия равны нулю, уравнение сводится к следующему: тензор Эйнштейна = 0. Это так называемое уравнение Эйнштейна для вакуума, и хотя на первый взгляд оно может показаться простым, не следует забывать, что это уравнение является нелинейным дифференциальным уравнением в частных производных, которые почти никогда не решаются просто. Более того, уравнение Эйнштейна для вакуума на самом деле представляет собой систему из десяти нелинейных дифференциальных уравнений в частных производных, поскольку тензор состоит из десяти независимых коэффициентов. Это уравнение очень похоже на гипотезу Калаби, которая предполагает равенство нулю кривизны Риччи. Нет ничего особо удивительного в том, что оно имеет так называемое тривиальное решение, которое не представляет никакого интереса: пространственно-временной континуум, в котором нет ни материи, ни гравитации и в котором в принципе ничего не происходит. Однако существует и более интригующая возможность и именно о ней идет речь в гипотезе Калаби: может ли уравнение Эйнштейна для вакуума также иметь и нетривиальное решение? И ответ на этот вопрос, как мы увидим в свое время, утвердительный.
Вскоре после того, как Черн в середине 1940-х годов сформулировал понятие классов Черна, он показал, что для многообразий с кривизной Риччи, равной нулю, то есть для многообразий определенной геометрии, первый класс Черна также должен обращаться в нуль. Калаби представил проблему в другом виде, задавшись вопросом, насколько топологические особенности пространства определяют его геометрию или, точнее, позволяют пространству иметь ту или иную геометрию. Обратное верно далеко не всегда. К примеру, известно, что гладкая поверхность, то есть не имеющая углов, гауссова кривизна которой больше единицы, должна быть ограниченной или компактной. Она не может простираться до бесконечности. Но в общем случае компактные гладкие поверхности не обязательно имеют метрику с гауссовой кривизной больше единицы.
Например, бублик является совершенно гладким и компактным, однако его гауссова кривизна далеко не везде положительна, не говоря уже о том, что она далеко не всегда больше единицы. На самом деле, как уже обсуждалось ранее, метрика с гауссовой кривизной, равной нулю, вполне возможна, а метрика, кривизна которой всюду положительна, — нет.
Таким образом, гипотеза Калаби столкнулась с двумя большими затруднениями: из того, что эта гипотеза представляла собой утверждение, обратное общеизвестному факту, еще не следовала ее истинность. И даже при условии ее истинности, доказать существование метрики, удовлетворяющей всем необходимым требованиям, чрезвычайно сложно. Подобно гипотезе Пуанкаре, появившейся ранее, гипотезу Калаби, точнее важный частный случай этой гипотезы, можно сформулировать одним предложением: «Компактное кэлерово многообразие, в котором первый класс Черна обращается в нуль, может иметь риччи-плоскую метрику». Однако для доказательства этого простого утверждения потребовалось более двух десятилетий. Ну а работа над всеми возможными следствиями из данного утверждения продолжается уже несколько десятилетий после его доказательства.
Как заметил Калаби: «Я изучал кэлерову геометрию и понял, что пространство, которое может иметь по крайней мере одну кэлерову метрику, может также иметь и другие кэлеровы метрики. Найдя одну из них, не составит труда найти и прочие. Моей целью было нахождение такой метрики, которая была бы лучше всех остальных — более “округлая”, если так можно выразиться, — та, которая дает больше всего информации и сглаживает все неровности многообразия». Таким образом, гипотеза Калаби, по его словам, посвящена тому, как найти «лучшую» метрику.[43]
Можно выразить это словами Грина: «Мы пытаемся найти ту единственную метрику, которую дал нам Бог».[44]
Лучшей с геометрической точки зрения иногда является так называемая «однородная» метрика. В этом случае, зная свойства одной из частей поверхности, можно сделать выводы о поверхности в целом. Благодаря постоянной кривизне и постоянной кривизне в двухмерном направлении, сфера представляет собой пример однородной метрики. Обладая совершенной симметрией, сфера со всех сторон выглядит одинаково, в отличие, например, от футбольного мяча, имеющего на поверхности швы и неровности. В то время как для сферы однородность метрики при положительной кривизне является возможной, многообразия Калаби-Яу, имеющие более одного комплексного измерения, могут характеризоваться постоянной кривизной в двухмерном направлении только в том случае, если они являются совершенно плоскими, — в этом случае кривизна в двухмерном направлении всюду равна нулю. Если не рассматривать этот вариант, то, по словам Калаби, «лучшим из остающихся вариантов будет попытка сделать кривизну настолько постоянной, насколько это только возможно».[45]Лучшее, что нам удалось, — сделать постоянной кривизну Риччи, точнее, приравнять ее к нулю.
Гипотеза Калаби в целом является более общим утверждением и не ограничивается случаем равенства нулю кривизны Риччи. Случай постоянной кривизны Риччи также очень важен, особенно случай постоянной отрицательной кривизны, который использовался мной для решения некоторых важных проблем алгебраической геометрии, — о чем пойдет речь в шестой главе. Однако случай нулевой кривизны Риччи особо важен, поскольку кривизна в данном случае не просто постоянна, а равна нулю. А это, в свою очередь, порождает особую проблему — задачу нахождения метрики для многообразия или класса многообразий, которые, будучи близки к совершенству, тем не менее интересны с геометрической точки зрения.
В этом и состояло препятствие. Через два десятилетия после того, как Калаби сформулировал свое утверждение, очень немногие из математиков — как, впрочем, и сам автор гипотезы — верили в ее истинность. По сути, она была слишком хороша, чтобы быть истинной. Я также находился в рядах скептиков, но, не желая оставаться далее на вторых ролях, скрывал свои сомнения. С другой стороны, я горел желанием доказать ее неверность.
Пятая глава
Доказывая Калаби
Математическое доказательство чем-то напоминает восхождение на гору. На первом этапе, конечно, требуется найти гору, которая стоила бы восхождения. Представьте себе отдаленную пустынную местность, где еще не ступала нога человека. В наши дни такую местность обнаружить непросто, не говоря уже о том, удастся ли там найти что-то стоящее. Затем альпинист разрабатывает план, как добраться до вершины, который кажется ему безупречным, по крайней мере, на бумаге. После приобретения нужных инструментов и оборудования, а также необходимых навыков, авантюрист приступает к восхождению, однако останавливается, столкнувшись с неожиданными трудностями. Но те, кто пойдет по его следам, используя те из его приемов, которые оказались удачными, выбирая другие пути, — достигнут новых высот на пути к вершине. Наконец появляется некто, не только имеющий хороший план, позволяющий избежать прошлых ошибок, но и решительно настроенный на то, чтобы покорить эту вершину и, возможно, установить на ней флаг в знак своего достижения. В математике угроза жизни и здоровью первопроходцев не столь велика, да и их приключения едва ли покажутся захватывающими кому-либо со стороны. И завершение долгого доказательства ученый не отмечает установкой флага. Он (или она) публикует это доказательство в научном журнале. Или в подстрочном примечании. Или в техническом приложении. В любом случае, и в нашей области есть и азарт, и опасность, с которыми мы постоянно сталкиваемся в процессе поисков, и успех сопутствует тем из нас, кому удалось по-новому взглянуть на скрытые тайны природы.