Выбрать главу

Рис. 1.4. Поскольку мы не знаем, как нарисовать четырехмерное изображение, этот рисунок представляет собой весьма грубое, умозрительное отображение четырехмерного пространства-времени. В основе концепции пространства-времени лежит предположение, что три пространственных измерения нашего мира (представленные здесь в виде осей x, y и z) полностью равноправны с четвертым измерением — временем. Мы представляем себе время как постоянно изменяющуюся непрерывную переменную, и на данном рисунке представлены моментальные снимки координатных осей, сделанные в различные моменты времени: t1, t2, t3 и т. д. Таким способом мы попытались показать, что в целом существуют четыре измерения: три пространственных и еще одно, представленное временем

В своей статье Калуца взял за основу общую теорию относительности Эйнштейна и добавил еще одно дополнительное измерение, расширив матрицу 4×4 до размера 5×5. Расширив пространственно-временной континуум до пяти измерений, Калуца сумел объединить две известные на тот момент физические силы — гравитацию и электромагнетизм — в одну единую силу. Для наблюдателя, находящегося в пятимерном мире, который вообразил Калуца, эти силы абсолютно идентичны, что, собственно, и понимается под объединением. А вот в четырехмерном мире они не сольются в одну, а, напротив, будут полностью независимы друг от друга.

Можно сказать, что это происходит потому, что обе силы просто не умещаются в одной матрице 4×4. В то же время дополнительное измерение предоставляет достаточно свободного места в матрице для обеих сил, позволяя им быть составляющими одной более всеобъемлющей силы.

Рискуя навлечь на себя неприятности, все же скажу, что, по моему мнению, только математик обладает достаточной смелостью, чтобы считать, что переход к пространствам более высокой размерности позволит проникнуть в суть явления, которое до тех пор безуспешно пытались исследовать в пространствах более низкой размерности. Я так считаю потому, что математики все время имеют дело с дополнительными измерениями. Нам настолько удобно ими пользоваться, что мы уже не обращаем на них особого внимания. Вполне возможно, что мы способны манипулировать дополнительными измерениями даже ночью, не выходя из фазы быстрого сна.

Впрочем, хотя я и убежден, что только математик способен на столь смелый шаг, в данном случае математик в своей работе опирался на работу физика, Эйнштейна. В свою очередь другой физик, Оскар Клейн, о котором мы вскоре поговорим, построил свою работу на фундаменте, заложенном математиком Калуцой. По этой причине я предпочитаю говорить, что я работаю на стыке двух наук — математики и физики, где происходят процессы сродни перекрестному опылению в ботанике. Именно благодаря тому, что я с 1970-х годов блуждаю по этой плодородной области, мне удалось стать причастным ко многим захватывающим открытиям.

Вернемся к провокационной идее Калуцы. Люди в те времена задавались вопросом, который не утратил своей актуальности и по сей день. И, несомненно, этим же вопросом задавался и Калуца: если действительно существует пятое измерение — абсолютно новое направление движения в знакомом нам четырехмерном мире, — почему его никто до сих пор не видел?

Очевидное объяснение состоит в том, что это измерение чрезвычайно мало. Но где же оно может находиться? Представьте себе нашу четырехмерную Вселенную как одну линию, которая простирается бесконечно в обоих направлениях. Основная идея заключается в том, что три пространственных измерения чрезвычайно (либо бесконечно) велики. Допустим, что время также можно представить в виде бесконечной линии, хотя это допущение и может быть спорным. В любом случае, каждая точка w на том, что мы представили себе как линию, на самом деле обозначает определенную точку (x, y, z, t) в четырехмерном пространстве-времени.

В геометрии линии имеют только длину, но не имеют толщины. Рассмотрим, однако, возможность того, что наша линия все же имеет какую-то толщину, увидеть которую можно лишь через очень мощное увеличительное стекло. С этой точки зрения линия, которую мы себе представили, — на самом деле не линия, а очень узкий цилиндр, что-то вроде садового шланга. Теперь, если мы разрежем наш шланг в каждой точке w, в сечении этого разреза мы получим крошечную окружность, которая, как уже говорилось выше, является одномерной кривой. Таким образом, эта окружность представляет собой дополнительное пятое измерение, которое в определенном смысле «прикреплено» к каждой точке четырехмерного пространства. Измерение, скрученное в крошечную окружность, в научном языке называется компактным (или компактифицированным). Значение слова «компактное» легко понять интуитивно: физики иногда говорят, что объект или пространство является компактным, если вы можете поместить его в багажник своего автомобиля. Существует и более точное определение: если вы будете двигаться вдоль компактного измерения в одном и том же направлении в течение достаточно долгого времени, то сможете вернуться в ту же точку, из которой вышли. Пятимерное пространство-время Калуцы включает в себя как протяженные (бесконечные), так и компактные (конечные) измерения.

Но если эта картина верна, то почему же мы не замечаем, что ходим кругами в пятом измерении? Ответ на этот вопрос в 1926 году дал шведский физик Оскар Клейн, развив тем самым идею Калуцы. Опираясь на квантовую теорию, Клейн рассчитал размер компактного измерения и получил число, которое действительно было крошечным — близким к так называемой планковской длине, величине настолько малой, насколько только можно себе представить — порядка 10-30см в окружности.[10] Этим и объясняется то, что пятое измерение существует, оставаясь при этом ненаблюдаемым. Мы не способны ни увидеть это крошечное измерение, ни зафиксировать движение в его пределах.

Теория Калуцы-Клейна, как ее теперь называют, замечательно иллюстрировала роль дополнительных измерений в демистификации тайн природы. После размышлений над статьей Калуцы, длившихся на протяжении более двух лет, Эйнштейн написал в рецензии, что эта идея ему «чрезвычайно»[11] понравилась. И понравилась она ему настолько, что в ближайшие двадцать лет он постоянно возвращался к ней (иногда в сотрудничестве с физиком Питером Бергманом). Но, в конце концов, теория Калуцы-Клейна была отвергнута. Отчасти это произошло потому, что эта теория предсказывала существование элементарной частицы, которая так никогда и не была обнаружена, отчасти — из-за того, что попытки использовать теорию для расчета отношения массы электрона к его заряду привели к неверным результатам. К тому же Калуца и Клейн — так же, как и Эйнштейн после них, — пытались объединить только электромагнетизм и гравитацию, поскольку ничего не знали ни о слабом, ни о сильном взаимодействии, природа которых была непонятна вплоть до второй половины XX столетия. По этой причине их попытки объединить все силы в одну были с самого начала обречены на провал, так как в колоде, которой они играли, недоставало пары важных карт. Но, по-видимому, основной причиной, по которой теория Калуцы-Клейна была отброшена, стало то, что ее создание пришлось как раз на то время, когда начинала набирать обороты квантовая революция.

Рис. 1.5. Попробуем представить бесконечное, четырехмерное пространство-время в виде линии, неограниченно простирающейся в обоих направлениях. Линия, по определению, толщины не имеет. Но если бы мы посмотрели на эту линию через увеличительное стекло, то, как предполагается в теории Калуцы-Клейна, увидели бы, что линия все же имеет некоторую толщину. Это и есть то самое дополнительное скрытое измерение, и его размер ограничивается диаметром окружности сечения нашей линии

Тогда как Калуца и Клейн в центр своей физической модели поставили геометрические идеи, квантовая теория не только не основывается на геометрии, но и, напротив, вступает в противоречие с привычными геометрическими представлениями (этому вопросу посвящена четырнадцатая глава). В результате переворота, произведенного квантовой теорией, вихрем пронесшейся по физике XX века, и того сверхъестественно плодотворного периода, который последовал за этим, об идее дополнительных измерений вновь вспомнили лишь спустя почти пятьдесят лет.