Этот путь стал еще четче, когда через пятьдесят лет после Декарта Исаак Ньютон и Готфрид Лейбниц, разделяющие идеи Декарта в области аналитической геометрии, создали дифференциальное и интегральное исчисление. На протяжении десятилетий и столетий новые инструменты дифференциального и интегрального исчисления внедрялись в геометрию такими математиками, как Леонард Эйлер, Жозеф Лагранж, Гаспар Монж и, в первую очередь, Карл Фридрих Гаусс, под чьим руководством в 1820‑х достигла своего совершеннолетия так называемая дифференциальная геометрия. Дифференциальная геометрия предполагает использование декартовой системы координат для описания поверхностей, которые затем могут быть детально проанализированы с помощью методов дифференциального исчисления; дифференцирование – это метод нахождения угла наклона любой гладкой кривой.
Создание дифференциальной геометрии, которая продолжила свое развитие и после Гаусса, стало величайшим достижением. С помощью инструментов дифференциального исчисления геометры описывали свойства кривых и поверхностей с намного большей точностью, чем это было возможно ранее. Подобные сведения можно получить путем дифференцирования или, что эквивалентно, путем нахождения производных, показывающих, как изменяется функция в ответ на изменение аргумента. Функцию можно рассматривать как алгоритм или формулу, в которой каждому числу, поданному на вход (значению аргумента), ставится в соответствие некоторое число на выходе (значение функции). Например, в функции y = x 2 значение аргумента xподается на вход, а на выходе получается значение функции y. Функция однозначна: если вы будете подставлять в нее одно и то же значение x,то всегда получите одно и то же значение y, так, в нашем примере, подставляя x = 2, вы всегда получите y = 4. Производная характеризует отношение приращения значения функции к заданному приращению аргумента; величина производной отражает чувствительность функции к незначительным изменениям аргумента.
Производная – это не только абстрактное понятие; это реальное число, которое можно вычислить и которое сообщает нам о наклоне кривой или поверхности в данной точке. Например, в приведенном выше примере можно найти производную функции (которая в данном случае оказывается параболой) в точке x = 2. Что произойдет со значением функции y, если немного сместиться из этой точки, например, в точку x = 2,001? В этом случае значение yстанет равным 4,004 (с точностью до трех знаков после запятой). Производная в этой точке будет равна отношению приращения значения функции (0,004) к приращению значения аргумента (0,001), то есть 4. Именно это число и будет производной функции при x = 2или, другими словами, наклоном кривой (параболы) в этой точке.
Расчеты, конечно, могут оказаться гораздо более трудоемкими при переходе к более сложным функциям и более высоким размерностям. Но вернемся на время к нашему примеру. Мы получили производную функции y = x 2 из отношения приращения yк приращению x, поскольку производная функции говорит нам о наклоне (или крутизне) в данной точке – тогда как наклон служит непосредственной мерой приращения yпо отношению к приращению x.
Проиллюстрируем это другим способом: рассмотрим мяч, лежащий на некоей поверхности. Если мы слегка толкнем мяч в какую‑либо сторону, как это отразится на его вертикальной координате? Если поверхность более или менее плоская, то высота, на которой находится мяч, практически не изменится. Но если мяч находился на крутом склоне, изменение высоты будет более существенным. Таким образом, производные характеризуют наклон поверхности в непосредственной близости от мяча.
Рис. 2.2.Площадь фигуры, ограниченной кривой, можно вычислить при помощи интегрального исчисления, разделив область под кривой на бесконечно узкие прямоугольники и затем сложив их площади. По мере того как прямоугольники становятся все уже и уже, это приближение становится все точнее и точнее. Если перейти к пределу, при котором ширина прямоугольников стремится к нулю, результат станет точным
Конечно, нет причин ограничиваться только одной точкой на поверхности. Путем вычисления производных, показывающих изменение геометрии (или формы) для различных точек поверхности, можно точно рассчитать кривизну объекта в целом. Хотя наклон в каждой данной точке дает только локальную информацию, относящуюся к «окрестностям» указанной точки, значения, полученные для различных точек, можно объединить и вывести функцию, описывающую наклон объекта в любой точке. Затем при помощи интегрирования– грубо говоря, путем сложения и усреднения – можно получить функцию, описывающую объект как единое целое. Таким образом, мы получим представление о структуре всего объекта, что и является центральной идеей всей дифференциальной геометрии – возможность создать общую картину для всей поверхности или многообразия на основе локальной информации, полученной из производных, отражающих геометрию (или метрику) в каждой точке.
Помимо достижений в области дифференциальной геометрии, Гаусс внес существенный вклад и в другие области математики и физики. Пожалуй, наибольшее значение для нас имеет его поразительное предположение, что не только объекты, находящиеся в пространстве, но и пространство само по себе также может быть искривлено. Открытие Гаусса бросило вызов евклидовой концепции плоского пространства – представлению, относившемуся не только к интуитивно понятной двухмерной плоскости, но и к трехмерному пространству, называя которое плоским подразумевают, что параллельные линии в таком пространстве не пересекаются, а сумма углов треугольника всегда составляет ровно 180°.
и 1+ и 2+ и 3> 180° Положительная кривизна
и 1+ и 2+ и 3= 180° Нулевая кривизна
и 1+ и 2+ и 3< 180° Отрицательная кривизна
Рис. 2.3.На поверхности с положительной кривизной (такой, как сфера) сумма углов треугольника больше 180°, и линии, кажущиеся параллельными (такие, как меридианы) могут пересечься, например, на Северном и Южном полюсах. На плоской поверхности (поверхности с нулевой кривизной), которая является основой евклидовой геометрии, сумма углов треугольника равна 180°, и параллельные линии не пересекаются. На поверхности с отрицательной кривизной, например имеющей форму седла, сумма углов треугольника меньше 180°, а линии, кажущиеся параллельными, на самом деле расходятся
Эти принципы, являющиеся ключевыми для евклидовой геометрии, не выполняются в искривленных пространствах. Рассмотрим сферическое пространство, подобное поверхности глобуса. Если смотреть на глобус со стороны экватора, линии меридианов кажутся параллельными, поскольку все они перпендикулярны экватору. Но если вы проследуете по ним в одном из двух направлений, то увидите, что они в конце концов сходятся на Северном и Южном полюсах. Этого не произойдет в плоском евклидовом пространстве, таком как карта в проекции Меркатора, на которой две линии, перпендикулярные третьей, являются действительно параллельными и никогда не пересекаются.
В неевклидовом пространстве сумма углов треугольника может быть или больше, или меньше, чем 180°, в зависимости от того, как искривлено пространство. Если пространство, подобно сфере, имеет положительную кривизну, сумма углов треугольника всегда будет больше 180°. И напротив, если пространство имеет отрицательную кривизну, как внутренняя часть седла, сумма углов треугольника всегда будет меньше 180°. Узнать кривизну пространства можно, определив величину, на которую сумма углов треугольника больше или меньше 180°.
Гаусс также ввел понятие внутренней геометрии– идею, согласно которой объект или поверхность имеет свою собственную кривизну (так называемую гауссову кривизну), которая не зависит от того, как этот объект располагается в пространстве. Рассмотрим для примера лист бумаги. Можно ожидать, что его кривизна равна нулю, и так оно и есть. Теперь свернем этот лист бумаги в цилиндр. Двухмерная поверхность цилиндра, согласно Гауссу, имеет две главные кривизны, проходящие в направлениях, перпендикулярных друг другу: первая кривизна относится к окружности и имеет величину 1/ r, где r– это радиус основания цилиндра. Если r =1, то эта кривизна также равна единице. Вторая кривизна проходит вдоль образующей цилиндра, которая представляет собой прямую линию. Кривизна прямой линии, очевидно, равна нулю, поскольку прямая – она и есть прямая. Гауссова кривизна цилиндра, как любого другого двухмерного объекта, равна произведению одной кривизны на вторую, которое в нашем случае равно 1Ч0 = 0. Таким образом, в понятиях собственной кривизны цилиндр представляет собой то же самое, что и лист бумаги, из которого он свернут, – он совершенно плоский. Нулевая собственная кривизна цилиндра обусловлена тем, что цилиндр можно сделать из листа бумаги, не растягивая и не деформируя его. Иными словами, измерения расстояний между любыми двумя точками на поверхности листа – вне зависимости от того, разложен ли лист на столе или свернут в трубочку, – дадут одинаковые результаты. Это значит, что геометрия и, следовательно, собственная кривизна листа бумаги остаются неизменными вне зависимости от того, плоский этот лист или свернутый.