Именно этим и занимается дифференциальная геометрия. Кривизна в дифференциальной геометрии определяется локально, то есть в отдельных точках, однако полученная таким образом информация применяется для того, чтобы сделать выводы о пространстве в целом. «Кривизна управляет топологией» – наш основной девиз. А нашим основным инструментом являются дифференциальные уравнения.
Геометрический анализ – сравнительно новая область математики, к обсуждению которой мы сейчас приступим, – развивает эту идею дальше. Следует отметить, что общий подход, предусматривающий использование дифференциальных уравнений в геометрии, развивался в течение нескольких столетий, зародившись практически одновременно с дифференциальным исчислением. Одним из первых исследователей в этой области стал великий швейцарский математик XVIII столетия Леонард Эйлер. Помимо всего прочего, он первым применил дифференциальные уравнения в частных производных для систематического исследования трехмерных поверхностей. Через два с лишним столетия после Эйлера мы продолжаем идти по его стопам. По сути, Эйлер был одним из первых, кто обратил внимание на нелинейные уравнения, лежащие сегодня в основе геометрического анализа.
Нелинейные уравнения, как правило, весьма сложны для решения, отчасти потому, что описываемые ими модели носят более запутанный характер. Так, нелинейные системы по своей природе менее предсказуемы, чем линейные, – хорошим примером здесь может служить погода – даже небольшие изменения в начальных условиях могут привести к совершенно другим результатам. Возможно, наиболее известной формулировкой того же утверждения является так называемый эффект бабочки в теории хаоса, парадоксальным образом предсказывающий возможность того, что взмах крыла бабочки в одной части мира может стать причиной возникновения торнадо в другой.
Линейные системы, напротив, содержат в себе гораздо меньше подводных камней и, следовательно, гораздо более просты для понимания.
Линейные зависимости – это зависимости типа y= 2x, названные так, поскольку их графиками являются прямые линии. Каждому значению аргумента здесь соответствует единственное значение функции. Двоение xавтоматически приведет к удвоению yи наоборот. Изменение одной переменной всегда пропорционально изменению другой; невозможно получить огромный скачок в значении одной из переменных, лишь слегка изменив другую. Если бы законы природы описывались исключительно линейными зависимостями, наш мир был бы намного проще для понимания – хотя и значительно менее интересным. Но это не так – и именно поэтому приходится иметь дело с нелинейными уравнениями.
Впрочем, существуют некоторые методы, упрощающие работу с нелинейными уравнениями. К примеру, сталкиваясь с нелинейной задачей, можно прибегнуть к соответствующему линейному приближению и использовать его до тех пор, пока оно не перестанет быть применимым. Так, проанализировать волнистую (нелинейную) кривую можно путем нахождения производных соответствующей функции, что дает возможность представить кривую в виде совокупности касательных или, другими словами, линейных элементов(прямых линий) в любых необходимых нам точках кривой.
Аппроксимация нелинейного мира линейными зависимостями является для ученых обычной практикой, что, конечно, никоим образом не изменяет сам факт принципиальной нелинейности Вселенной. Для того чтобы получить возможность работать с нелинейными системами непосредственно, необходимо использовать математические приемы, лежащие на границе между геометрией и нелинейными дифференциальными уравнениями. Именно это было осуществлено в рамках геометрического анализа, математического подхода, оказавшегося весьма полезным как для теории струн, так и для всей современной математики в целом.
Я не хотел бы, чтобы у вас возникло впечатление, будто бы начало геометрического анализа было заложено только в первой половине 1970‑х годов, когда я остановил свой выбор на этой области математики. Как я уже говорил, в математике никто не может заявить о том, что он начал что‑либо с чистого листа. Так и идея геометрического анализа восходит еще к XIX столетию – а именно к работам французского математика Анри Пуанкаре, который, в свою очередь, основывался на трудах Римана и других его предшественников.
Рис. 3.3.Метод геометрического анализа, известный как поток сокращения кривых, дает математическое описание механизма превращения любой несамопересекающейся замкнутой кривой в окружность без возникновения при этом каких‑либо особенностей, таких как выступы, петли или узлы
Вклад, внесенный многими из моих непосредственных предшественников в математику, был весьма значителен, таким образом, к моменту моего выхода на сцену в области нелинейного анализа уже имелось множество детально разработанных теорий. К подобным теориям относится разработанная Морри, Алексеем Погореловым и другими теория нелинейных дифференциальных уравнений в частных производных для случая двухмерного пространства, которые называют эллиптическими уравнениями и которые будут обсуждаться в пятой главе. В 1950‑х годах Эннио де Джорджи и Джон Нэш разработали методы исследования подобных уравнений для случая большего числа измерений и более того – для любого числа измерений. Вскоре после этого теории, созданные для большого числа измерений, были развиты такими учеными, как Морри и Луис Ниренберг, что говорит о том, что я выбрал отличное время для начала работы в данной области и применения разработанных ими методов к геометрическим задачам.
Несмотря на то что подход, который я и мои коллеги взяли на вооружение в начале 1970‑х, не был чем‑то совершенно новым, мы попытались взглянуть на него с совершенно иной точки зрения. Так, для Морри дифференциальные уравнения в частных производных имели фундаментальное значение сами по себе и представляли скорее подлежащее изучению прекрасное творение разума, нежели средство для достижения какой‑либо цели. Интересуясь также и геометрией, он рассматривал ее в основном как источник интересных дифференциальных уравнений, точно так же он смотрел и на многие области физики. И хотя мы оба восхищались этими уравнениями, наши цели были практически противоположны – вместо того, чтобы пытаться искать новые нелинейные уравнения в геометрических задачах, я собирался использовать эти уравнения для решения геометрических задач, до этого считавшихся неразрешимыми.
Вплоть до 1970‑х годов геометры всячески избегали нелинейных уравнений, впрочем, я и мои современники не испытывали перед ними сильного страха. Мы поставили себе целью узнать, как следует обращаться с подобными уравнениями, чтобы затем использовать их в своей повседневной работе. Рискуя показаться нескромным, я все же скажу, что эта стратегия не только оправдала себя, но и вышла далеко за рамки первоначальных задач. На протяжении многих лет, используя методы геометрического анализа, мы занимались решением важнейших задач, не разрешенных до этого каким‑либо другим способом. «Смесь геометрии с теорией [дифференциальных уравнений в частных производных], – отметил математик Имперского колледжа Лондона Саймон Дональдсон, – задает тон во всей обширной области, касающейся данного предмета, на протяжении последней четверти столетия».[26]
Итак, чем же занимается геометрический анализ? Рассмотрим сначала простейший пример. Предположим, что вы нарисовали окружность и сравнили ее с произвольной петлей или замкнутой кривой, которая имеет несколько меньшую длину, – в роли подобной петли может выступать обычная резинка, небрежно брошенная на письменный стол. Эти две кривые выглядят совершенно различными и, естественно, имеют разную форму. Однако можно представить, как резинка деформируется (или растягивается) и превращается в окружность – такую же, как та, что нарисована на бумаге.
Существует много способов сделать это. Вопрос в том, какой из них лучше? Иными словами, существует ли такой способ, который будет безотказно работать во всех возможных случаях и никогда не приведет к возникновению узлов или перекручиваний? Можно ли найти этот универсальный способ, не прибегая к методу проб и ошибок? Узнать все это можно в рамках геометрического анализа, который позволяет, исходя из геометрии произвольной кривой (в нашем случае резинки), сделать выводы о способах ее преобразования в окружность. Этот процесс не должен быть произвольным. Строго определенный или – еще лучше – канонический путь превращения нашей кривой в окружность однозначно определяется ее геометрией. Для математиков слово каноническийявляется синонимом слова «единственно верный», что, впрочем, иногда звучит излишне строго. Представим себе, что мы хотели бы попасть с Северного полюса на Южный. Существует бесконечно много меридианов, соединяющих эти точки. Каждый из меридианов будет кратчайшим путем, но ни один из них не будет единственно верным; вместо этого мы называем такие пути каноническими.