Выбрать главу

Представим, к примеру, что каждый житель Соединенных Штатов получил свой собственный номер. Номер, присвоенный каждому конкретному человеку, не содержит в себе совершенно никакой информации о нем или о ней. Но если взглянуть на эти номера как на единое целое, то можно много интересного узнать про более крупный «объект» – а именно Соединенные Штаты – например, про численность населения этой страны или скорость его роста.

Вот еще один пример, позволяющий наглядно представить это весьма абстрактное понятие. Как обычно, начнем рассмотрение с весьма простого объекта, а именно сферы – поверхности, имеющей одно комплексное или два вещественных измерения. Сфера имеет только один класс Черна, который в данном случае равен эйлеровой характеристике. Во второй главе, как вы помните, обсуждались некоторые особенности метеорологии и динамики морских течений на планете сферической формы. Представим теперь, что в каждой точке данной планеты с запада на восток дует ветер. Точнее, почти в каждой точке. Представить ветер, дующий в восточном направлении, на экваторе или на любой параллели, не составит никакого труда. Однако в двух точках, лежащих; на северном и южном полюсах, которые можно назвать сингулярными, ветра не будет вовсе – это неизбежное следствие сферической геометрии. Для поверхностей, обладающих подобными особыми точками, первый класс Черна не равен нулю. Иными словами, в данном случае первый класс Черна является неисчезающим.

Теперь рассмотрим бублик. Ветры на подобной поверхности могут дуть в любом направлении – по большим окружностям вокруг дырки, по малым окружностям через дырку или даже по более сложным спиральным траекториям, никогда не сталкиваясь с точкой сингулярности, в которой они должны остановиться. Можно совершить сколь угодно оборотов вокруг бублика, ни разу не натолкнувшись на какое‑либо препятствие.

Рассмотрим следующий пример. Для так называемых K3 поверхностей, имеющих два комплексных или четыре вещественных измерения, первый класс Черна обращается в нуль. Более подробно K3 поверхности будут рассмотрены в шестой главе. Согласно гипотезе Калаби, именно это свойство должно позволить им иметь риччи‑плоскую метрику, подобно тору. Однако в отличие от двухмерного тора, эйлерова характеристика которого равна нулю, величина чдля K3 поверхности равна 24. Дело в том, что эйлерова характеристика и первый класс Черна, совпадающие в случае одного комплексного измерения, для более высоких размерностей могут заметно отличаться.

Следующим пунктом в нашем списке является кривизна Риччи – ключевое понятие для понимания гипотезы Калаби. Кривизна Риччи является обобщением более конкретного понятия, известного как кривизна в двухмерном направлении. Для того чтобы понять, как с ней работать, представим себе простую картину: сферу и касательное к ней пространство – плоскость, касающуюся сферы в точке северного полюса. Эта плоскость, перпендикулярная прямой, соединяющей центр сферы и точку касания, содержит в себе все касательные вектора, которые можно построить из данной точки сферы. Аналогично, трехмерная поверхность имеет трехмерное касательное пространство, состоящее из всех векторов, являющихся касательными к данной точке, – и так для любого числа измерений. Каждый вектор, лежащий на касательной плоскости, также является касательным к большой окружности сферы, проходящей через северный и южный полюса. Если теперь взять все большие окружности, касательные к векторам плоскости и объединить их, то результатом будет новая двухмерная поверхность. В данном случае двухмерная поверхность, полученная таким образом, совпадет с первоначальной сферой, но для более высоких размерностей подобная поверхность будет представлять собой двухмерное подмногообразие, находящееся в пределах другого, большего по размерам пространства. Кривизна касательной плоскости в двухмерном направлении будет совпадать с гауссовой кривизной полученной двухмерной поверхности.

Для того чтобы найти кривизну Риччи, возьмем некую точку на многообразии и найдем касательный вектор, проходящий через нее. Затем обратим внимание на все касательные двухмерные плоскости, содержащие данный вектор, каждая из которых имеет свою собственную кривизну в двухмерном направлении, которая, как уже было сказано, совпадает с гауссовой кривизной связанной с ней поверхности. Кривизна Риччи представляет собой среднее значение кривизны всех этих плоскостей. Многообразие можно считать риччи‑плоским, если для любого произвольно выбранного вектора среднее кривизны касательных плоскостей в двухмерном направлении равно нулю, даже если для каждой отдельной плоскости это условие не выполняется.

Рис. 4.6. Первый класс Чернадля двухмерных поверхностей, подобных этой, совпадающий с эйлеровой характеристикой, относится к точкам, в которых поток векторного поля полностью останавливается. На поверхности сферы, например глобуса, таких точек две. К примеру, если течение направлено с северного полюса на южный, как на изображенной слева сфере, то на каждом из полюсов суммарный поток будет равен нулю, поскольку в данных точках векторы будут взаимно компенсировать друг друга. Аналогично, если течение направлено с запада на восток, как на сфере, изображенной справа, также возникнут две точки остановки движения – на северном и южном полюсах, – в которых ничто не движется, поскольку само понятие востока и запада для этих точек отсутствует. Противоположным примером является поверхность бублика, на которой жидкость может течь как в вертикальном (на изображенном слева бублике), так и в горизонтальном направлении (на бублике, изображенном справа), не встречая при этом ни малейших препятствий. Именно поэтому первый класс Черна равен нулю для бублика, в котором сингулярные точки отсутствуют, но не равен нулю для сферы

Как вы уже могли догадаться, это означает, что ранее рассмотренный пример с двухмерной сферой, через северный полюс которой проходит касательный вектор, совершенно нам неинтересен, поскольку данный вектор содержится только в одной касательной плоскости. В этом случае кривизна Риччи представляет собой просто кривизну в двухмерном направлении этой плоскости, которая, в свою очередь, совпадает с гауссовой кривизной сферы, – для сферы единичного радиуса эта кривизна будет равна единице. Но при переходе к более высоким размерностям, число комплексных измерений для которых больше одного или число вещественных измерений больше двух, возникает весьма широкий выбор касательных плоскостей, и, как следствие, многообразие может быть риччи‑плоским, не будучи при этом плоским во всех своих точках, то есть, будучи риччи‑плоским, оно может иметь отличную от нуля кривизну в двухмерном направлении и отличную от нуля гауссову кривизну.

Рис. 4.7.Определение первого класса Черна для конкретного объекта сводится к нахождению точек, в которых поток векторного поля обращается в нуль. Подобные точки можно обнаружить в центре воронки, например в центре урагана, который представляет собой имеющую круговую форму область спокойной погоды, от 2 до 200 миль в диаметре, окруженную одними из наиболее грандиозных атмосферных явлений. На фотографии запечатлен ураган Фран 1996 года, как раз перед тем, как он опустошит Восточное побережье Соединенных Штатов, принеся миллиарды долларов убытка (фотография Хаслера, Честера, Грисволда, Пирса, Паланнаппана, Маньина, Суммея, Стара, Кенитцера & де Да Бюжардере, Лаборатория по изучению атмосферы, Центр космических полетов доктора Годдарда, НАСА)

Кривизна в двухмерном направлении полностью определяет риманову кривизну, которая, в свою очередь, содержит в себе всю возможную информацию о кривизне поверхности. В четырехмерном случае для описания кривизны необходимы двадцать чисел, для более высоких размерностей – еще больше. Тензор римановой кривизны может быть представлен в виде суммы двух слагаемых – тензора Риччи и так называемого тензора Вейля, на котором мы подробно останавливаться не будем. Главное, что из двадцати чисел, необходимых для описания римановой кривизны в четырехмерном случае, десять описывают кривизну Риччи и десять – кривизну Вейля.