Выбрать главу

Отчасти задача исследователя состоит в том, чтобы убедиться в способности теории струн дать ответ на вопрос: почему Вселенная именно такова, какова она есть? Этот ответ должен объяснить и причину, по которой пространство‑время, в котором мы живем, выглядит четырехмерным, в то время как теория настаивает на его десятимерности. В теории струн это кажущееся несоответствие объясняется компактификацией. Это понятие не является совершенно новым, поскольку Калуца и Клейн (особенно Клейн) уже предполагали, что дополнительное измерение в их пятимерной теории на самом деле компактифицировано – сжато до столь малых размеров, что увидеть его было попросту невозможно. В аналогичной ситуации оказались и струнные теоретики – только они имели в своем распоряжении не одно, а шесть «лишних» измерений.

Слово «лишние» вводит в заблуждение, поскольку мы на самом деле не пытаемся избавиться от каких‑либо измерений. Задача состоит в том, чтобы неким замысловатым образом свернуть эти измерения – придать им строго определенную геометрическую форму, которая позволила бы произвести магический акт компактификации, составляющий одну из основных задач теории струн. При этом количество возможных геометрий, ведущих к различным способам компактификации, чрезвычайно велико.

Вся идея, по словам гарвардского физика Кумруна Вафы, может быть представлена в виде простого уравнения, понятного каждому: 4+6=10.[54] Этим можно ограничиться, хотя вы, возможно, захотите переформулировать его в виде: 10‑6=4, означающем, что, скрыв (или вычтя) шесть измерений, мы получим десятимерную Вселенную, кажущуюся нам четырехмерной. Компактификацию с тем же успехом можно рассматривать как своеобразную разновидность умножения, известную как декартово, или прямое, произведение – произведение, в котором количества измерений складываются, а не умножаются. Соответствующее уравнение, описывающее результирующее многообразие, в котором четыре измерения объединяются с шестью ( 4 Ч 6=10), предполагает, что наше десятимерное пространство‑время имеет подструктуру, являющуюся прямым произведением четырех‑ и шестимерного пространства‑времени, точно так же как плоскость представляет собой прямое произведение двух линий, а цилиндр – прямое произведение линии и окружности. Цилиндр, как уже говорилось, представляет собой наглядную и часто используемую иллюстрацию идеи Калуцы и Клейна. Если вы представите наше четырехмерное пространство‑время в виде линии, имеющей бесконечную протяженность в обоих направлениях, а затем мысленно разрежете ее и рассмотрите один из концов в микроскоп, то сможете увидеть, что на самом деле эта линия имеет некую толщину, и правильнее было бы говорить о ней не как о линии, а как о цилиндре, хотя и очень маленького радиуса. Именно внутри этой окружности крошечного радиуса и спрятано пятое измерение теории Калуцы‑Клейна. Теория струн продвигает эту идею на несколько шагов дальше, утверждая, что, посмотрев на сечение этого тонкого цилиндра при помощи еще более мощного микроскопа, можно обнаружить не одно, а целых шесть скрытых внутри него измерений. Независимо от того, где вы находитесь – в четырехмерном пространстве‑времени или на поверхности бесконечно длинного цилиндра, – к каждой точке прикреплено крошечное шестимерное пространство. И независимо от того, где вы находитесь в этом бесконечном пространстве, можете быть уверены, что компактное шестимерное пространство, спрятанное «по соседству», будет точно таким же.

Эта картина, конечно, является весьма грубой и схематичной и ничего не говорит нам о подлинной геометрии этого компактифицированного шестимерного мира. Возьмем, к примеру, обычную сферу, представляющую собой двухмерную поверхность, и мысленно сожмем ее в точку, то есть превратим ее в нульмерный объект. Таким образом, мы компактифицировали два измерения, превратив их в ничто. Можно попытаться таким же образом свести десять измерений к четырем, сжимая теперь уже шестимерную сферу a 2 +b 2 +c 2 +d 2 +e 2 +f 2 =1, но в качестве геометрии дополнительных измерений этот вариант не пройдет; уравнения теории струн требуют строго определенной структуры шестимерного пространства, и обычная сфера этим требованиям не соответствует.

Было ясно, что требовалась более сложная форма, и после успеха Грина и Шварца с нарушением четности задача нахождения этой формы вышла на первый план. Как только физикам стал бы известен точный вид многообразия, в которое сворачиваются дополнительные шесть измерений, они, наконец, смогли бы перейти от слов к делу.

Следующий шаг был предпринят в 1984 году, когда Грин, Шварц и Питер Вест из Кингс‑Колледжа заинтересовались K3‑поверхностями – широким классом комплексных многообразий, который изучался математиками уже более столетия, хотя внимание именно физиков K3 привлекли, когда мои доказательства гипотезы Калаби показали, что эти поверхности могут поддерживать риччи‑плоскую метрику. «Я понял, что компактное пространство должно быть риччи‑плоским, для того чтобы космологическая постоянная пространства более низкой размерности, в котором мы живем, не была положительной – как и требовали все теории того времени», – вспоминает Шварц.[55] В свете последующего открытия темной энергии, предполагающей наличие чрезвычайно малой, но все же положительной космологической постоянной, пришлось разработать более сложные варианты теории, предполагающей возникновение очень малой космологической постоянной в нашем четырехмерном мире из компактных риччи‑плоских пространств, – об этом пойдет речь в десятой главе.

Поверхность K3, обязанная своим названием горе K2 и трем математикам, исследовавшим геометрию подобных пространств, – Эрнсту Куммеру, упоминавшемуся ранее Эриху Кэлеру и Кунихико Кодайра, – была выбрана для предварительной проверки несмотря на наличие у нее только четырех вещественных (или двух комплексных) измерений вместо требуемых шести, во многом благодаря тому, что коллеги убедили Грина, Шварца и Веста в отсутствии аналогов этих многообразий более высокой размерности. Однако, как говорит Грин: «Я совершенно уверен в том, что мы нашли бы способ расставить все по местам… даже если бы в то время и не получили этой информации [о существовании шестимерных аналогов риччи‑плоских K3 поверхностей]».[56] «То, что исследование было начато с испытанных K3 поверхностей, – добавляет Шварц, – было обусловлено совсем не желанием найти подлинный вид компактификации. Мы просто хотели поиграть, посмотреть, что мы получим в результате и как это связано с сокращением аномалий».[57] С тех пор поверхности K3 имеют неоценимое значение для струнных теоретиков, исполняя роль «игрушечных моделей» для компактификации. Они также незаменимы при исследовании двойственностей в теории струн, о которых пойдет речь в следующей главе.

Примерно в то же время, в 1984 году, физик Эндрю Строминджер, сейчас работающий в Гарварде, а тогда – в Институте перспективных исследований (ИПИ) в Принстоне, объединил свои усилия с физиком‑теоретиком Филиппом Канделасом, сейчас работающим в Оксфорде, а тогда – в Техасском университете, для того чтобы определить класс шестимерных пространств, удовлетворяющий строгим условиям теории струн. Им было известно, что внутренние пространства этих шестимерных многообразий должны быть компактными, чтобы иметь возможность перейти от десяти к четырем измерениям, а кривизна должна удовлетворять как уравнениям теории гравитации Эйнштейна, так и требованиям симметрии, налагаемым теорией струн. Эти исследования в конце концов привели их и еще двоих их коллег – Гари Горовица из Калифорнийского университета и Виттена – к тем пространствам, существование которых я установил, доказав гипотезу Калаби, хотя Виттен пришел к этим многообразиям собственным путем. «Одной из важнейших особенностей открытий в современной науке является то, что физики и математики по совершенно разным причинам зачастую приходят к одним и тем же структурам, – делится своим наблюдением Строминджер. – Порой физики обгоняют математиков, порой математики обгоняют физиков. В данном случае математики оказались впереди. Им удалось понять важность этих пространств раньше нас».[58]