Наш интерес, однако, заключался не столько в определении количества рациональных кривых, сколько в исследовании многообразия как такового. Дело в том, что в процессе подсчета мы по сути дела перемещаемся по кривым, используя хорошо разработанные методики, до тех пор пока не проходим все пространство. В ходе этой процедуры мы фактически определяем пространство – неважно, будет это трехмерная поверхность пятого порядка или какое‑либо другое многообразие, – в терминах данных кривых.
Результатом всего вышесказанного стало второе рождение уже порядком подзабытой области геометрии. По словам Марка Гросса, математика из Калифорнийского университета, идея использования зеркальной симметрии для решения задач нумеративной геометрии, впервые предложенная Канделасом и его сотрудниками, привела к возрождению целой дисциплины. «К тому времени эта область исследований почти полностью исчерпала себя, – говорит Гросс. – Когда все старые задачи были решены, ученые занялись перепроверкой чисел Шуберта при помощи современных вычислительных технологий, но это занятие едва ли можно было назвать увлекательным. И вдруг, как гром с ясного неба, Канделас заявил о разработке ряда новых методов, выходящих далеко за пределы того, что мог представить себе Шуберт».[105] Физики многое заимствуют из математики, а вот математики, прежде чем заимствовать из физики метод Канделаса, прежде всего потребовали более детального обоснования его строгости.
Случайно, приблизительно в это же время – в мае 1991 года, если быть точным, – я организовал конференцию в Исследовательском институте математических наук Беркли, для того чтобы математики и физики получили возможность поговорить о зеркальной симметрии. И. М. Зингер, один из основателей института, изначально выбрал для конференции другую тему, но мне удалось его переубедить, упомянув некоторые из новых открытий в области зеркальной симметрии, которые представлялись мне особенно захватывающими. Зингер как раз незадолго до этого посетил лекцию Брайана Грина и потому легко согласился со мной и попросил возглавить это мероприятие.
Я возлагал большие надежды на то, что эта конференция позволит преодолеть барьеры между родственными областями исследований, возникающие из‑за разницы в языке и накопленных знаниях. Во время конференции Канделас представил результаты, полученные им для проблемы Шуберта, но оказалось, что его число заметно отличалось от числа, полученного гораздо более строгим путем двумя норвежскими математиками Гейром Эллингсрудом и Штейном Арилдом Штремме (их ответ был – 2 682 549 425). В силу присущей им заносчивости, математики, работающие в области алгебраической геометрии, обвинили физиков в том, что те допустили ошибку. Прежде всего, по словам математика из Кайзерслаутернского университета Андреаса Газмана, «математики просто не понимали того, чем занимались физики, поскольку они [физики] использовали совершенно другие методы – не существующие в математике и далеко не всегда строго доказанные»[106].
Канделас и Грин были весьма озабочены возможностью допущенной ими ошибки, но им никак не удавалось понять, где именно они встали на неверный путь. В то время я много общался с обоими, особенно с Грином, и меня также занимал вопрос, где именно в процессе интегрирования по бесконечномерному пространству, которое нужно было затем свести к конечной размерности, могла быть допущена какая‑либо неточность. Конечно, в ходе математических преобразований неоднократно приходилось сталкиваться с проблемой выбора, причем ни один из вариантов нельзя было считать совершенным. Однако хотя все это ставило Канделаса и Грина в несколько неловкое положение, нам не удавалось обнаружить какую‑либо погрешность в их рассуждении, основанном скорее на физических идеях, нежели на строгом математическом доказательстве. Более того, несмотря на критику со стороны математиков, они остались верны зеркальной симметрии.
Все прояснилось приблизительно через месяц, когда Эллингсруд и Штремме обнаружили ошибку в своей компьютерной программе. Исправив ее, они получили тот же ответ, что и Канделас с соавторами. Норвежские математики проявили высокую степень научной честности, запустив заново свою программу, перепроверив результаты и обнародовав свою ошибку. На их месте многие постарались бы скрывать найденную ошибку как можно дольше, но Эллингсруд и Штремме сделали противоположное, моментально проинформировав научное сообщество как об ошибке, так и о ее исправлении.
Для зеркальной симметрии заявление, сделанное Эллингсрудом и Штремме, стало настоящим моментом истины. Оно не только привело к дальнейшему развитию этой области, но и помогло изменить отношение к самой идее. Если до этого многие математики считали зеркальную симметрию полной чушью, то теперь пришлось признать, что им все же есть чему поучиться у физиков. Показательно, что математик Дэвид Моррисон, в то время работавший в Университете Дьюка, на встрече в Беркли был одним из наиболее ярых критиков. Однако после описанных событий его мнение полностью изменилось, и вскоре ему даже удалось внести существенный вклад в концепцию зеркальной симметрии, теорию струн и теорию переходов с изменением топологии для многообразий Калаби‑Яу.
Разобравшись с проблемой Шуберта для кривых третьего порядка, Канделас и его коллеги применили разработанный ими метод зеркальной симметрии для нахождения решений в случае кривых со степенями от единицы до десяти. В результате они получили общую формулу, позволяющую для трехмерной поверхности пятого порядка найти число кривых любой необходимой степени. Проделав это, они встали на прямую дорогу, ведущую к решению задачи вековой давности, еще в 1900 году названной немецким математиком Дэвидом Гильбертом одной из двадцати трех важнейших математических задач современности, – речь идет о попытке построить «строгое основание исчислительной геометрии Шуберта», обеспечив таким образом «возможность заранее предсказать как степень полученных уравнений, так и число их решений».[107] Формула, выведенная Канделасом, удивила многих из нас. Численные решения задачи Шуберта оказались обычными последовательностями чисел, не имеющими ни общих особенностей поведения, ни видимых связей между собой. Впрочем, работа Канделаса и его коллег показала, что эти числа не являются случайными, а представляют собой важную часть завершенной структуры.
Существование данной структуры, установленное Канделасом и его сотрудниками, позволило получить формулу, необходимую для дальнейшей работы. Эта формула была проверена при помощи большого числа математических вычислений для полиномов со степенями от одного до четырех. О первых трех задачах уже шла речь ранее, а для кривых четвертого порядка решение было получено в 1995 году математиком Максимом Концевичем (в настоящее время работает в Институте высших научных исследований) – он получил число 242 467 530 000. Хотя формула, полученная группой Канделаса, полностью согласовывалась со всеми известными данными, вопрос о строгом доказательстве все еще был открыт. Многие математики, включая Концевича, предприняли немало усилий для представления уравнений Канделаса в форме полноценной гипотезы – в основном, за счет определения слагаемых, входящих в уравнения. Полученное в результате утверждение, известное как гипотеза о зеркальной симметрии, уже можно было подвергнуть окончательной проверке – математическому доказательству. Доказательство гипотезы о зеркальной симметрии стало обоснованием идеи зеркальной симметрии самой по себе.
Здесь я вынужден упомянуть одну из конфликтных ситуаций, которые время от времени возникают в математике. Как мне кажется, подобные ситуации неизбежны, поскольку мы живем в несовершенном мире, населенном несовершенными существами, а математика, несмотря на устоявшееся мнение о ней, совсем не является чистой интеллектуальной деятельностью, огражденной от политики, честолюбия, конкуренции и эмоций. Часто оказывается, что в подобных вопросах чем мельче причина для спора, тем большие она вызывает разногласия.
Мы с моими коллегами занимались исследованием гипотезы о зеркальной симметрии и ее обобщениями с 1991 года – со времени объявления Канделасом своих результатов. В статье, выложенной на сайт arXiv.org в марте 1996 года, Александр Гивенталь из Калифорнийского университета заявил, что ему удалось доказать гипотезу о зеркальной симметрии. Мы тщательно проработали эту статью и сочли ее – и в этом мы были не одиноки – крайне неясной. В том же году я лично пригласил моего коллегу из Массачусетского технологического института, считавшегося экспертом в этой области (который пожелал, чтобы его имя в этой книге осталось неназванным), прочитать на моем семинаре лекцию, посвященную доказательству Гивенталя. Он вежливо отказался, упомянув о своих серьезных сомнениях в убедительности аргументов, приведенных в статье. Точно так же и мне с моими коллегами не удалось шаг за шагом воспроизвести доказательство Гивенталя, несмотря на все наши попытки связаться с ним и соединить воедино те фрагменты, которые нам казались наиболее запутанными. Тогда мы приняли решение оставить эти бесплодные усилия и год спустя опубликовали наше собственное доказательство гипотезы о зеркальной симметрии.