Выбрать главу

В настоящее время теория гомологической зеркальной симметрии установила тесную связь с другими областями математики, в том числе и с гипотезой SYZ. На сегодняшний день, однако, не существует «строгой математической эквивалентности между двумя теориями, [но] они поддерживают друг друга, – утверждает Гросс. – И, если они обе верны, мы рано или поздно обнаружим их эквивалентность на определенном уровне»[124].

Эта история еще не закончена. Мы до сих пор пытаемся выяснить, что же представляет собой зеркальная симметрия, с помощью наших исследований гипотезы SYZ, гомологической зеркальной симметрии и других подходов. Введение зеркальной симметрии привело к созданию новых направлений в математике, уже не имеющих ничего общего с самой зеркальной симметрией, и никто точно не знает, как далеко заведут нас эти исследования и где они в конечном итоге закончатся. Однако мы точно знаем, с чего они начались, – с открытия необычного свойства компактных кэлеровых многообразий, носящих название многообразий Калаби‑Яу, – пространств, на которых более двух десятилетий назад был практически поставлен крест.

Восьмая главаПетли в пространстве‑времени

Зигмунд Фрейд считал, что, для того чтобы понять природу человеческого разума, необходимо изучать людей, чье поведение не укладывается в общепринятые нормы, то есть является аномальным, – людей, одержимых странными, навязчивыми идеями: например, в число его знаменитых пациентов входили «человек‑крыса» (у которого были сумасшедшие фантазии, в которых дорогих ему людей привязывают ягодицами к горшку с крысами) и «человек‑волк» (который часто видел сон, как его заживо съедают белые волки, сидящие на дереве перед окном его спальни). Фрейд считал, что больше всего мы узнаем о типичном поведении, изучая самые необычные, патологические случаи. С помощью таких исследований, по его словам, мы могли бы в конечном итоге прийти к пониманию как норм, так и отклонений от них.

Мы часто применяем аналогичный подход в математике и физике. «Мы ищем области пространства, в которых не работают классические описания, поскольку именно в этих областях, мы открываем что‑то новое», – поясняет гарвардский астрофизик Ави Лёб. Рассуждаем ли мы об абстрактном пространстве в геометрии или о более материальном пространстве, которое мы называем Вселенной, области «где что‑то ужасное происходит с пространством, где вещи разрушаются», как говорит Лёб, и являются теми областями, которые мы называем сингулярностями.[125]

Вопреки тому, что вы могли бы подумать о сингулярностях, они широко распространены в природе. Они вокруг нас: капля воды, отрывающаяся и падающая из неисправного водопроводного крана, – самый распространенный пример (часто наблюдающийся в моем доме), место (хорошо известное серфингистам), где океанские волны разрываются и дробятся, сгибы в газете (которые показывают, является статья важной или просто «водой») или места скруток на воздушном шарике, свернутом в виде французского пуделя. «Без сингулярностей вы не можете говорить о формах», – замечает геометр Хэйсукэ Хиронака, заслуженный профессор Гарвардского университета. Он приводит в качестве примера собственную подпись: «Если здесь нет пересекающихся линий, острых углов, то это просто каракули. Сингулярность представляла бы собой пересекающиеся или внезапно меняющие направление линии. В мире можно встретить много подобных вещей, и они делают мир интереснее».[126]

В физике и космологии два вида сингулярностей стоят особняком среди прочих бесчисленных возможностей. Один вид – это сингулярность во времени, известная как Большой взрыв. Я как геометр не знаю, как представить себе Большой взрыв, потому что никто, включая физиков, в действительности не знает, что это такое. Даже Алан Гут, создатель концепции космической инфляции, понятия, которое, по его словам, «помещает взрыв в Большой взрыв», допускает, что термин Большой взрыввсегда страдал от неопределенности, вероятно, потому, что «мы до сих пор не знаем (и, может быть, никогда не узнаем), что в действительности произошло».[127] Я полагаю, что в этом случае скромность нам не помешает.

И хотя мы довольно невежественны, когда дело доходит до применения геометрии к точному моменту рождения Вселенной, мы, геометры, достигли некоторых успехов в борьбе с черными дырами. Черная дыра – это, по существу, участок пространства, сжатый в точку под действием силы тяжести. Вся эта масса, упакованная в крошечном пространстве, образует сверхплотный объект, вторая космическая скорость (мера его гравитационного притяжения) возле которого превышает скорость света, что приводит к захвату любой материи, включая свет.

Несмотря на то что существование черных дыр вытекает из общей теории относительности Эйнштейна, черные дыры все еще остаются странными объектами, и сам Эйнштейн отрицал их существование до 1930 года, то есть спустя 15 лет после того, как немецкий физик Карл Шварцшильд представил их в виде решений знаменитых уравнений Эйнштейна. Шварцшильд не верил в физическую реальность черных дыр, но сегодня существование таких объектов является общепризнанным фактом. «В настоящее время черные дыры открывают с удивительным постоянством каждый раз, когда кому‑нибудь из НАСА понадобится очередной грант», – заявляет Эндрю Строминджер.[128]

Рис. 8.1.Считается, что на расстоянии в двенадцать миллионов световых лет в центре спиральной галактики М81 находится супермассивная черная дыра, которая примерно в семьдесят миллионов раз тяжелее нашего Солнца (фото любезно предоставлено НАСА)

И хотя астрономы обнаружили большое число кандидатов в черные дыры и накопили массу наблюдательных данных, подтверждающих этот тезис, черные дыры все еще окутаны тайной.

Общая теория относительности дает совершенное и адекватное описание больших черных дыр, но картина рушится, когда мы двигаемся к центру вихря и рассматриваем исчезающе малую сингулярную точку бесконечной кривизны. Общая теория относительности не может бороться с крошечными черными дырами, размер которых меньше пылинки, – здесь вступает в игру квантовая механика. Неадекватность общей теории относительности становится явно очевидной в случае таких миниатюрных черных дыр, когда массы являются огромными, расстояния – крошечными, а кривизна пространства‑времени не поддается изображению. В этом случае выручает теория струн и пространства Калаби‑Яу, которые приветствуются физиками с момента создания теории, в частности потому, что они могут разрешить конфликт между приверженцами общей теории относительности и сторонниками квантовой механики.

Один из самых горячих споров между сторонниками этих выдающихся разделов физики вращается вокруг вопроса о разрушении информации черной дырой. В 1997 году Стивен Хокинг из Кембриджского университета и Кип Торн из Калтеха заключили пари с Джоном Прескиллом, также из Калтеха. Предметом спора было следствие теоретического открытия Хокинга, сделанного в начале 1970‑х годов, заключающееся в том, что черные дыры не являются полностью «черными». Хокинг показал, что эти объекты имеют очень низкую, но не нулевую температуру, а это означает, что они должны удерживать некоторое количество тепловой энергии. Как любое другое «горячее» тело, черная дыра будет излучать энергию во внешнюю среду до полного исчерпания всей энергии и испарения черной дыры. Если излучение, испускаемое черной дырой, является строго тепловым и, следовательно, лишено информационного содержания, то информация, первоначально сохраняемая в пределах черной дыры, скажем, если в случае поглощения ею звезды с определенным составом, структурой и историей, – исчезнет, когда черная дыра испарится. Этот вывод нарушает фундаментальный принцип квантовой теории, утверждающий, что информация системы всегда сохраняется. Хокинг доказывал, что, вопреки квантовой механике, в случае черных дыр информация может быть уничтожена, и Торн с ним соглашался. Прескилл отстаивал точку зрения, что информация выживет.

«Мы верим, что если вы бросите два ледяных кубика в кастрюлю с кипящей водой в понедельник и проверите атомы воды во вторник, то вы сможете определить, что днем раньше в воду были брошены два ледяных кубика, – объясняет Строминджер, – не практически, а в принципе»[129]. Можно на этот вопрос ответить по‑другому: возьмите книгу, например «451 градус по Фаренгейту», и бросьте ее в огонь. «Вы можете решить, что информация потеряна, но если у вас достаточно приборов и вычислительной техники и вы можете измерить все параметры огня, проанализировать пепел, а также прибегнуть к услугам “демона Максвелла” (или в этом случае “демона Лапласа”), то вы сможете воспроизвести оригинальное состояние книги», – замечает физик Хироси Огури из Калтеха.[130] «Однако если вы бросили бы ту же книгу в черную дыру, – возражает Хокинг, – то данные были бы потеряны». Прескилл, в свою очередь, как и Герард ’т Хоофт и Леонард Зюскинд до него, отстаивает позицию, что два случая не радикальным образом отличаются друг от друга и что излучение черной дыры каким‑то неуловимым способом обязано содержать в себе информацию классики Рэя Брэдбери, которая, теоретически, может быть восстановлена.