Теория струн также стала первой непротиворечивой теорией квантовой гравитации – самого больного вопроса современной физики. Но она пошла еще дальше. «Теория струн обладает прекрасной предсказательной силой в отношении гравитации», – утверждает Виттен. Под этим он подразумевает, что теория струн делает больше, чем просто описывает гравитацию. «Этот феномен встроен в рамки теории, и тот, кто ничего не знает о гравитации, мог бы открыть ее, как естественное следствие самой теории».[265] В дополнение к квантованию гравитации теория струн подошла к решению таких задач, как проблема энтропии черной дыры, которую не удается решить другими средствами. В этом смысле теорию струн уже можно считать успешной теорией на определенном уровне, даже если она не станет окончательной теорией физики.
Хотя этот вопрос вынесен на обсуждение, можно не сомневаться, что теория струн приведет к бесценному кладу новых идей, новых инструментов и новых направлений в математике. Например, открытие зеркальной симметрии привело к появлению «семейных предприятий» в области алгебраической и исчислительной геометрии. Зеркальная симметрия, то есть идея, что большинство пространств Калаби‑Яу имеют зеркального партнера с другой топологией, но соответствующего той же физике, была открыта в контексте теории струн, а ее справедливость подтверждена математикой. Это, как мы видели, делается по типичной схеме: теория струн может дать понятия, намеки и подсказки, а математики в большинстве случаев обеспечивают доказательство.
Одна из причин, по которой зеркальная симметрия представляет такую ценность для математики, заключается в том, что сложные вычисления для одного пространства Калаби‑Яу могут оказаться намного проще для его зеркального партнера. В результате, исследователи смогли в короткие сроки решить многовековые проблемы математики. Гомологическая зеркальная симметрия и теория Строминджера‑Яу‑Заслоу (Strominger‑Yau‑Zaslow – SYZ, СЯЗ), которую разрабатывают с середины 1990‑х годов, вскрыли неожиданные, но полезные связи между симплектической геометрией и алгебраической геометрией – двумя разделами математики, которые ранее рассматривались отдельно. Хотя зеркальная симметрия была открыта при исследовании теории струн, истинность ее математического фундамента не зависит от теории струн. «Это явление, – отмечает Эндрю Строминджер, – можно описать так, что оно вообще не будет включать теорию струн, [но] прошло бы много времени, пока бы мы его обнаружили, если бы у нас не было теории струн».[266]
Приведу другой пример: в работе 1996 года я и мой бывший аспирант Эрик Заслоу использовали идею из теории струн для решения классической задачи алгебраической геометрии, связанной с вычислением количества так называемых рациональных кривых на четырехмерной поверхности K3. Напомню, что термин K3 относится к целому классу поверхностей – не к одной, а к бесконечному их числу. «Кривые» в данном случае являются двухмерными римановыми поверхностями, определяемыми алгебраическими уравнениями, и представляют собой топологические эквиваленты сфер, встроенных в эту поверхность. Количество этих кривых, оказывается, зависит только от количества узлов, расположенных на кривой, или точек, указывающих, где кривая пересекает саму себя. Например, цифра «восемь» имеет один узел, тогда как у круга количество узлов равно нулю.
Рассмотрим еще один пример с узлами, который связан с нашим предыдущим обсуждением конифолдных переходов (в десятой главе): если взять двухмерный бублик и сжать одну из окружностей, проходящих сквозь дырку, до точки, то получим что‑то похожее на рогалик с соединенными концами. Если разделить эти два конца и разорвать поверхность, то получится топологический эквивалент сферы. Таким образом, можно считать такой «прищипнутый» бублик или «соединенный рогалик» сферой с одним узлом (или пересечением). Точно так же можно перейти к поверхностям более высокого рода и посмотреть на бублик с двумя дырками: сначала сожмем в точку окружность на «внутренней стенке» между двумя дырками, затем проделаем аналогичную операцию где‑нибудь на «наружной стенке» бублика. Объект с такими двумя точками сжатия фактически является сферой с двумя узлами, поскольку, если мы разделим эти две точки и разорвем поверхность, то получим сферу. Дело в том, что если начинать с поверхности более высокого рода, скажем, с двумя, тремя или более дырками, то можно получить кривую или сферу с большим количеством узлов.
Позвольте мне переформулировать задачу в алгебраической геометрии, которую мы пытались решить вначале: для поверхности K3 мы хотим определить количество рациональных кривых с gузлами, которые можно расположить на этой поверхности, для любого значения g(положительного целого числа). Используя обычные методы, математики придумали формулу, которая хорошо работает для кривых с шестью или меньшим количеством узлов, но не с большим. Заслоу и я приступили к решению более общей задачи, то есть к кривым с произвольным количеством узлов. Вместо обычного метода мы взяли теорию струн и рассмотрели задачу с точки зрения бран внутри пространства Калаби‑Яу.
В соответствии с теорией струн существуют браны, связанные с поверхностью K3, которая состоит из кривых (или двухмерных поверхностей, как мы определили ранее), а также так называемого плоского линейного расслоения, присоединенного к каждой кривой. Чтобы получить представление о таком линейном расслоении, представим человека, идущего по экватору с палкой произвольной длины – пусть даже бесконечно длинной, – держа ее перпендикулярно экватору и касательно к поверхности сферы. В конце концов, палка опишет цилиндр, который называют тривиальным линейным расслоением. Если человек во время ходьбы перевернет палку на 180 градусов, то палка опишет ленту Мёбиуса. Кстати, оба этих линейных расслоения являются «плоскими», то есть они обладают нулевой кривизной.
Заслоу и я заметили, что если взять пространство всех бран, содержащих кривые фиксированного рода g, которые связаны с данной поверхностью K3, и затем вычислить эйлерову характеристику этого пространства, то полученное число будет точно равняться числу рациональных кривых с gузлами, которые вписываются в эту поверхность K3.
Таким образом, я и мой коллега переформулировали исходную задачу в другом виде, показав, что все сводится к получению эйлеровой характеристики пространства бран. Затем мы использовали дуализм теории струн, разработанный Кумруном Вафа и Виттеном, для вычисления эйлеровой характеристики. Таким образом, теория струн дала новый инструментарий для решения задачи, а также новый способ формализации проблемы. Ранее алгебраические геометры не могли решить эту задачу, поскольку они не рассматривали браны: им никогда не приходило в голову решить ее в терминах пространства модулей, включающего в себя совокупность всех возможных бран данного типа.
Хотя мы с Заслоу набросали общий подход, полное доказательство было получено только спустя несколько лет другими учеными – Джимом Брайаном из Университета Британской Колумбии и Найчунгом Конаном Лойнгом из Университета Миннесоты. В результате теперь у нас есть математическая теорема, которая является истинной безотносительно к истинности теории струн.
Рис. 13.3.Если вы идете по экватору и все время удерживаете палку параллельно земле по касательной к поверхности, то опишете цилиндр. Если, огибая земной шар, вы перевернете палку на 180 градусов, то опишете более сложную поверхность, имеющую одну, а не две стороны, называемую лентой Мёбиуса