Для исследования Вселенной на уровне скрытых измерений или отдельных струн нам необходим новый вид геометрии, иногда называемой квантовой геометрией, способной работать как на самых больших, так и на самых маленьких масштабах, которые только можно вообразить. Геометрия такого рода должна быть совместима с общей теорией относительности на больших масштабах и квантовой механикой на малых масштабах и совпадать там, где обе теории пересекаются. По большей части квантовая геометрия пока не существует. Она гипотетична, хотя и важна, скорее надежда, чем реальность, название для поиска четко определенной математической теории. «Мы не знаем, как такая теория будет выглядеть или как она должна называться, – говорит Вафа. – Для меня не очевидно, что она должна называться геометрией».[280] Но независимо от названия, мы считаем, что геометрия, в том виде как она существует сейчас, исчерпала себя и ее необходимо заменить на что‑то более мощное – на геометрию, которой мы еще не знаем. Это путь всех наук, как и должно быть, поскольку застой означает смерть.
«Мы всегда ищем области, в которых наука оказывается бессильной, – объясняет физик Амстердамского университета Роберт Дикграаф. – Геометрия тесно связана с теорией Эйнштейна, и когда теория Эйнштейна испытывает потрясения, то геометрию ждет та же судьба. В конечном счете, уравнения Эйнштейна необходимо заменить так же, как они в свое время заменили уравнения Ньютона, и геометрия пойдет тем же путем».[281]
Но не будем перекладывать всю ответственность на геометрию, потому что проблема в большей степени связана с физикой, чем с математикой. Прежде всего, планковский масштаб, где начинаются все вышеупомянутые неприятности, вообще не является математической концепцией.
Это физическаяшкала длины, массы и времени. Даже тот факт, что классическая геометрия не работает на планковском масштабе, не означает, что что‑то не так с математикой как таковой. Методы дифференциального исчисления, лежащие в основе римановой геометрии, которая, в свою очередь, служит основой для общей теории относительности, не вдруг перестают работать при критическом масштабе длины. Дифференциальная геометрия предназначена по самой своей сути для работы на бесконечно малых длинах, которые можно устремлять к нулю так близко, как вы пожелаете. «У нас нет причин полагать, что экстраполяция общей теории относительности до мельчайших пространственных масштабов будет проблемой с точки зрения математики, – говорит Дэвид Моррисон, математик Калифорнийского университета в Санта‑Барбаре. – Здесь нет реальной проблемы и с точки зрения физики, за исключением того, что мы знаем, что это неверно».[282]
В общей теории относительности метрика, или функция, длины говорит нам о кривизне в каждой точке. На очень малых масштабах длины метрические коэффициенты колеблются в широких пределах, а это означает, что длина и кривизна также будут сильно колебаться. Другими словами, геометрия будет испытывать такие сильные сдвиги, что вряд ли будет иметь смысл называть ее геометрией. Это похоже на железнодорожную систему, где рельсы могут уменьшаться, удлиняться и искривляться как угодно, – такая железная дорога никогда не доставила бы вас к месту назначения или вы прибыли бы туда не по расписанию. Как говорится, это не для железной дороги и не для геометрии.
Как и многие другие проблемы, которых мы коснулись в этой книге, эти геометрические странности вытекают из фундаментальной несовместимости квантовой механики и общей теории относительности. Квантовую геометрию можно рассматривать как язык квантовой гравитации (математический формализм, необходимый для решения проблемы совместимости), какой бы эта теория не оказалась. Существует еще один способ рассмотрения данной проблемы физиками: геометрия сама по себе может быть явлением скорее «производным», чем фундаментальным. Если эта точка зрения верна, то она может объяснить, почему традиционные геометрические описания мира дают сбои в областях, которые отличаются малыми размерами и очень высокими энергиями.
«Производное» явление можно видеть в примере с прудом или озером, который мы обсуждали ранее в этой главе. Если вы смотрите на большой водоем, то целесообразно рассматривать воду как жидкость, которая течет и образует волны и характеризуется общими свойствами, такими как вязкость, температура и температурные градиенты. Но если вы рассматриваете крошечные капли воды под микроскопом, то, характеризуя их как жидкость, вы не сможете адекватно описать воду в целом. Вода, как известно, состоит из молекул, которые в малом масштабе ведут себя скорее как бильярдные шары, чем как жидкость. «Вы не можете, рассматривая волны на поверхности озера, сказать что‑нибудь о молекулярной структуре или о движении молекул H 2O, – объясняет физик Массачусетского технологического института Алан Адамс. – Это обусловлено тем, что описание воды как жидкости не является самым фундаментальным способом описания воды. С другой стороны, если известно, где находится каждая молекула и как она движется, вы, в принципе, можете сделать все выводы о водоеме и особенностях его поверхности. Другими словами, микроскопические свойства содержат макроскопическую информацию».[283] Вот почему мы считаем микроскопическое описание более фундаментальным, а макроскопические свойства – производными, то есть вытекающими из него.
Какое отношение все это имеет к геометрии? Мы знаем, что в соответствии с общей теорией относительности гравитация является следствием искривления пространства‑времени, но, как мы видели, такое описание гравитации для больших расстояний и низких энергий, которое в нашем случаем мы называем классической геометрией, не работает на планковском масштабе. Исходя из этого ряд физиков пришли к выводу, что современная теория гравитации, теория Эйнштейна, является всего лишь низкоэнергетическим приближением того, что происходит на самом деле. Эти ученые считают, что, подобно тому как волны на поверхности озера проистекают из основных молекулярных процессов, которые мы не можем видеть, гравитация и ее эквивалентная формулировка – геометрия также вытекает из фундаментальных ультра‑микроскопических процессов, которые, на наш взгляд, должны иметь место, даже если мы не знаем точно, что они собой представляют. Именно это люди имеют в виду, когда говорят, что гравитация или геометрия являются «производными» квантовой геометрии и квантовой гравитации на планковском масштабе.
Вафу беспокоит возможный «конец геометрии», что вполне справедливо, и не следует к этому относиться как к трагедии – греческой или какой‑либо другой. Крушение классической геометрии следует приветствовать, а не бояться, предполагая, что мы можем заменить ее чем‑то лучшим. Область геометрии постоянно менялась на протяжении тысячелетий. Если бы древнегреческие математики, в том числе сам великий Евклид, сегодня присутствовали на семинаре по геометрии, то они бы представления не имели, о чем мы говорим. А в скором времени мои сверстники и я окажутся в той же лодке по отношению к геометрии будущих поколений. Хотя я не знаю, как геометрия в конечном итоге будет выглядеть, я верю, что она будет жива и здорова и будет чувствовать себя даже лучше, чем когда‑либо, и будет помогать в разных ситуациях лучше и чаще, чем в настоящее время.
Джо Полчински, физик из Санта‑Барбары, как будто соглашается с этой точкой зрения. Он не считает, что крушение обычной геометрии на планковском масштабе является сигналом о «конце пути» для его любимой дисциплины. «Обычно, когда мы узнаем что‑то новое, старые вещи не следует отбрасывать, но переосмысливать и расширять их применение», – говорит Полчински. Перефразируя Марка Твена, он замечает, что известия о смерти геометрии сильно преувеличены. За короткий период в конце 1980‑х годов, добавляет он, геометрия стала «старой шляпой» в физике. Устарела. «Но затем она вернулась более сильной, чем когда‑либо. Учитывая, что до настоящего времени геометрия играла такую важную роль в открытиях, у меня есть все основания полагать, что это часть чего‑то большего и лучшего, а не то, что, в конце концов, будет отброшено».[284] Вот почему я утверждаю, что квантовая геометрия, или как вы ее называете, должна стать «расширением» геометрии, по выражению Полчински, так как нам необходимо нечто, что может работать и на большом масштабе, как классическая геометрия, и в то же время обеспечивать надежные физические описания на ультрамалых масштабах.