Я, конечно, не являюсь ни историком, ни специалистом по классической науке и поэтому не могу быть судьей в этом споре. Однако учитывая то немногое, что я знаю о Платоне, и гораздо большее, что я знаю о геометрии, я склонен принять сторону Зейла в этом вопросе, хотя бы по той причине, что, несмотря на 2400 лет или около того, что отделяют Платона от меня, мы одинаково смотрим на важность геометрии. Платон считал истины геометрии вечными и неизменными, в то время как знание, являющееся результатом эмпирической науки, более эфемерным по своей природе и неизбежно подвергаемым пересмотру. Я искренне согласен с его рассуждениями: геометрия может увести нас далеко в сторону при объяснении Вселенной на больших и малых масштабах, хотя, возможно, не до планковской шкалы, но когда мы доказываем что‑то строгими математическими методами, то можем быть уверены, что оно выдержит испытание временем. Геометрические доказательства, как бриллианты, рекламируемые по телевизору, – вечны.
Хотя сведения о «теории всего» Платона, изложенные в диалогах «Тимей», поражают наших современников как абсурдные (если не на грани психического расстройства), существует много параллелей между картиной Вселенной Платона и картиной Вселенной теории струн. Геометризация – идея, что физика, которую мы наблюдаем, вытекает непосредственно из геометрии, – стоит на фундаменте обоих подходов. Платон использовал многогранники, названные в его честь Платоновыми телами, преследуя собственные цели (неудачно, я мог бы добавить), во многом точно так же, как теория струн опирается на многообразия Калаби‑Яу, хотя мы надеемся, что результаты на этот раз будут лучше.
Платоновы тела в буквальном смысле построены на симметрии, как и современные теории в физике. В конце концов, поиски единой всеобъемлющей теории природы, по сути, сводятся к поиску симметрии Вселенной. Отдельные компоненты этой всеобъемлющей теории имеют свои собственные симметрии, такие как внутренняя симметрия калибровочных полей, которые дают нам лучшие современные описания электромагнитных, сильных и слабых взаимодействий. Более того, группы симметрии в этих построениях действительно связаны с симметрией Платоновых тел, хотя и не таким способом, как это представляли древние греки.
Сегодняшняя физика строится на дуальностях – идеях, заключающихся в том, что один и тот же физический мир можно описать двумя математически разными способами. Эти дуальности связывают четырехмерные квантовые теории поля с десятимерными теориями струн, десятимерную теорию струн с 11‑мерной М‑теорией и даже обнаруживают физическую эквивалентность между двумя многообразиями Калаби‑Яу, которые на первый взгляд не имеют ничего общего. Более того, Платоновы тела имеют свои собственные дуальности: куб и октаэдр, например, образуют дуальную пару, потому что каждый из них может быть повернут двадцатью четырьмя разными способами и после поворота совпасть сам с собой. Икосаэдр и додекаэдр принадлежат к более крупной группе симметрии, будучи инвариантными относительно шестидесяти различных вариантов поворота. Тетраэдр, между тем, дуален сам себе. Любопытно, что когда мой коллега, математик Питер Кронхаймер, чей кабинет находится через несколько дверей по коридору от моего, пытался классифицировать группу из четырехмерных многообразий Калаби‑Яу по симметрии, он обнаружил, что они следуют той же схеме классификации, что и Платоновы тела.
Я никоим образом не пытаюсь утверждать, что Платон, распространявший свои идеи на заре становления математики, всегда был прав. Напротив, его представления о происхождении элементов являются неверными. Точно так же попытки астронома Иоганна Кеплера объяснить орбиты планет Солнечной системы с помощью вложенных Платоновых тел, лежащих внутри концентрических сфер, также были обречены на провал. Детали в этих сценариях не складываются, и они даже не приближаются к истине. Но с точки зрения общей картины Платон во многом был на верном пути, определив некоторые из ключевых элементов головоломки, такие как симметрия, дуальность и общий принцип геометризации, которые, как мы сейчас полагаем, должны быть включены в любые реальные попытки объяснить картину мира.
В связи с этим мне кажется правдоподобным, что Платон отдал должное геометрии в надписи перед входом в его знаменитую Академию. Подобно тому как я разделяю его уважение к дисциплине, которую я выбрал много лет спустя, если бы я устанавливал вывеску над дверью моего явно не пользующегося известностью в Гарварде офиса, я бы изменил формулировку следующим образом: Да не останется здесь не знающий геометрии. Те же слова, я надеюсь, можно адресовать и читателям, сейчас «оставляющим» страницы этого небольшого тома и, надеюсь, смотрящим теперь на мир другими глазами.
Словарь терминов
D‑брана– брана, или многомерная поверхность в теории струн, на которой могут заканчиваться открытые струны, то есть струны, которые не являются замкнутыми петлями.
Алгебраическая геометрия– раздел математики, использующий алгебраические методы для решения геометрических задач. Главным предметом изучения алгебраической геометрии являются множества решений систем полиномиальных (задаваемых многочленами) уравнений.
Аномалия– нарушение симметрии, которое не является очевидным в классической теории, но становится явным при рассмотрении квантовых эффектов.
Антропный принцип– идея, согласно которой все наблюдаемые свойства Вселенной являются именно такими, потому что во Вселенной с другими свойствами не смог бы возникнуть наблюдатель. Иначе говоря, Вселенная выглядит именно так, потому что, если бы значения фундаментальных констант слегка отличались от существующих, жизнь никогда бы не зародилась, и человек, способный наблюдать такую Вселенную, не появился бы.
Бозон– частица с целым значением спина. Название частицы происходит от фамилии физика Бозе. Бозоны подчиняются статистике Бозе‑Эйнштейна, что означает, что в одном и том же состоянии может находиться неограниченное количество частиц. Элементарные бозоны являются квантами полей – переносчиками взаимодействий между элементарными фермионами – лептонами и кварками.
Большой взрыв– теория, согласно которой наша Вселенная начала расширяться из состояния с чрезвычайно высокой температурой и плотностью, и это расширение непрерывно продолжается до настоящего времени.
Брана– фундаментальный объект теории струн, представляющий собой n‑мерную мембрану (отсюда и произошло название объекта). Точка является 0‑браной, струна – 1‑браной, мембрана – 2‑браной и т. д. Основными типами стабильных n‑бран являются D‑браны, М‑браны и NSS‑браны.
Вакуум– состояние, лишенное вещества, с самой низкой плотностью энергии из всех возможных или основное состояние данной системы.
Вектор– геометрический объект (направленный отрезок), который характеризуется длиной и направлением. В общем случае в многомерном пространстве вектором называется упорядоченный набор чисел, преобразующийся при повороте системы координат по определенным правилам.
Выпуклый объект– объект, любые две точки которого могут быть соединены отрезком прямой, все точки которого принадлежат этому объекту, то есть отрезок полностью проходит внутри объекта.
Гауссиана– кривая, характеризующая распределение вероятностей случайной величины, иногда называемая колоколоподобной кривой. Это распределение вероятностей названо по имени математика Карла Фридриха Гаусса, который использовал его для анализа астрономических и других данных.
Геодезическая– траектория, которая, как правило, представляет собой кратчайший путь между двумя точками. На двухмерной плоскости эта траектория является отрезком прямой. На двухмерной сфере геодезическая находится на так называемой большой окружности, которая проходит через начальную и конечную точки на сфере, а ее центр совпадает с центром сферы. В зависимости от того, как проходит путь по большой окружности, геодезическая может быть или кратчайшим путем между этими двумя точками, или кратчайшим путем между этим точками по сравнению с любым соседним путем.