Выбрать главу

72

Випрошування

85

Наслідки

36

Дослід

74

Випадки

6

Спостереження

37

Шанси

6

Висновки щодо кількості термінів, яка використовується автором в межах одного посібника

Поняття=один термін

Поняття=два терміни

Поняття = три терміни

23,5

56,4

20,1

Поняття=один термін

Поняття=два терміни

Поняття = три терміни

Наявність символіки

84

16

0

58

Що ж стосується поняття множини (56,6%) (або простору (57,1%), або сукупності (7,4%)) елементарних подій, то окрім синонімічного аспекту проблеми (один термін – 85,3%; два терміни – 14,7%) тут є присутньою і омонімічна. Так деякі автори вважають, що до складу множини елементарних подій = 1,  2,  3, …,  n можуть входити лише елементарні події (69,6%). Інші ж вважають, що вона може складатись і із складених подій (30,4%), таким чином ототожнюючи поняття множини елементарних подій та повної групи (системи) подій.

В свою чергу при розгляді поняття повна група (система) подій виникає аналогічна ситуація. Тобто також маємо як синонімічний так і омонімічний аспект проблеми. Хоча тут слід зауважити, що концепції викладання матеріалу деякими авторами взагалі не передбачають введення означеного поняття (17,6%).

Так, при введенні повної групи подій деякі автори вважають, що вона повинна складатися виключно з несумісних подій (21,4%), інші ж не роблять таких обмежень, тобто вважають, що до складу повної групи можуть входити будь-які події. При цьому автори можуть вводити одне з понять “повна група подій” (47,1%) або “повна група попарно несумісних подій” (11,7%), або ж обидва ці поняття (17,6%).

Повертаючись до поняття події, можна відмітити, що внаслідок певного тлумачення деякі автори ототожнюють його з поняттям випадкової події, а інші ні. В результаті цього виникають два типи класифікації подій:

Події (55,6 %)

Достовірні події (70,5 %)

або

вірогідні події ( 29,5%)

Випадкові події

Неможливі події

Події = випадкові події (44,4%)

Як видно зі схеми, для різновидів подій також має місце синонімічна проблема. Але якщо в термінологічному аспекті вона стосується лише достовірних подій, то в символічному не залишаються поза її увагою й неможливі події. Так ті з авторів, які є прибічниками проведення аналогій між подіями та множинами використовують символи ,  (27,2%), інші ж або взагалі не дають ніяких вказівок щодо символіки (42,6%), або використовують символи U,V (30,2%).

Після вивчення видів подій автори посібників, як правило, переходять до розгляду відносин, які між ними існують. Тут також існує певна синонімічна варіативність.

Поняття

Терміни

%

Поняття

Терміни

%

Еквівалентні події

А=В

Еквівалентні події

56

Подія А спричинює подію В

АВ – 66,7 %;

АВ – 16,7%

– – 16,6%

В – окремий випадок А

16,7

Рівні події

32

В – наслідок А

33,4

Рівносильні події

47

В тягне за собою А

16,7

Із А слідує В

16,7

А спричиняє В

33,4

Поняття еквівалентності подій деякими авторами взагалі не вводиться (57,7%) в своїх посібниках. В тих же посібниках, де воно вводиться можуть використовуватись або один термін (57,1%), або два терміни (28,6%), або й три терміни (14,3%) в межах одного посібника. Що ж стосується поняття “наслідок події”, то воно також може не вводитись багатьма авторами в своїх посібниках (64,8%). В тих же посібниках, де воно вводиться можуть використовуватись або один термін (61,5 %), або два терміни (39,5%).

Ще одним питанням, яке безпосередньо стосується подій, є питання виконання дій над подіями, зокрема суми та добутку. Тут наявність синонімів має місце як для термінів так і для символів.

Символи

%

Поняття

Терміни

%

Кількість

С

%

Т

%

"або"

11,8

Сума подій

Сума

88,2

0

0

11,8

""

70,6

Об’єднання

52,9

1

23,5

1

35,3

"+"

94,1

2

76,5

2

52,9

"і"

11,8

Добуток подій

Добуток

76,5

0

0

11,8

""

70,6

Перетин

29,4

1

23,5

1

52,9

""

94,1

Суміщення

17,6

2

76,5

2

35,3

Ключовим поняттям стохастики є поняття ймовірності, розглядання якого може відбуватись за допомогою п’яти видів означень: інтуїтивне, класичне, статистичне, геометричне та аксіоматичне. Зупинимо свою увагу на статистичному (емпіричному) означенні. Як відомо, статистичне означення ймовірності базується на понятті частоти, якому властива як синонімічна, так і омонімічна сторона проблеми.

Поняття

Термін

%

Термін

Поняття

%

Частота

Частота

41,2

Частота

m-число появ деякої події при проведенні певної кількості випробувань

14,3

Частість

17,6

Відносна частота

41,2

m/n-відношення числа появ деякої події до загальної кількості випробувань

85,7

Статистична частота

11,8

При цьому автори можуть в межах одного збірника використовувати або два терміни (23,5%), або один (70,6%), або жодного (5,9%). Що ж стосується синонімізації символіки, то слід зазначити, що вона дійсно має місце і в підтвердження цих слів наведемо спектр символів, які застосовуються для позначення відносної частоти: P N{A}, P*(A), P n*(A), M/N, m/n, W(A), W n(A), n(A)/n, p k,  n(A).

В цій статті ми зробили лише певну вибірку стохастичних понять та термінів (символів) для ілюстрації взаємної неоднозначності між ними. Що ж стосується нашого власного бачення розв’язання цієї проблеми, то ми вважаємо за необхідне, все ж таки ознайомити учнів по можливості з усім спектром термінів, але ж зосереджувати їх увагу лише на одному, який і використовувати в подальших поясненнях. Так в своїй педагогічній практиці серед вище перелічених термінів ми вважаємо за потрібне використовувати наступні: стохастичний експеримент; елементарні події; множина елементарних подій, яка може складатися лише з елементарних подій; повна група подій, до складу якої можуть входити лише несумісні події; достовірні події; рівносильні події; сума та добуток подій; відносна частота. Але ми не можемо стверджувати, що саме такий вибір є найоптимальнішим, так як саме зараз ця гіпотеза проходить практичну перевірку.

Комп’ютернО-ОРІЄНТОВАНА МЕТОДИКА

вивчення диференціальних рівнянь

В.І. Клочко

м. Вінниця, Вінницький державний технічний університет

Проблеми вивчення курсу вищої математики пов’язують із високим рівнем абстракції, складною логічною структурою означень, теорем, методів, а в останній період із браком навчального часу. Ці проблеми зумовлені в першу чергу особливостями математики як предмету, психологічними особливостями розумової діяльності студентів, рівнем методичного забезпечення процесу навчання.

Важливим фактором усвідомленого вивчення математики, підвищення інтересу, організації індивідуальної навчальної діяльності, скорочення непродуктивних витрат часу на допоміжні роботи, розвитку творчої активності та здібностей студентів, підвищення унаочнення, виразності, доступності навчального матеріалу, моделювання фізичних явищ, технологічних процесів є використання комп’ютерних технологій.

Серед математичних пакетів, які можуть бути використані на заняттях при вивченні теми “Диференціальні рівняння”, вибрано DERIVE, MathCAD, Maple, Mathematica. При вивченні ДР на спеціальностях будівельного, машинобудівельного напрямків можуть бути використані демонстраційні програми пакета BUDMECH [1], в якому мультиплікація ефективно ілюструє процеси вільних незатухаючих коливань, вільних коливань при урахуванні сил опору, коливання у випадку резонансу тощо. Отримання необхідних чисельних значень динамічних характеристик рухів матеріальної точки можна одержати за допомогою автоматизованої контролюючо-навчальної системи (АКНС) [1]. Проте за допомогою даних пакетів не можна організувати діяльність студента спрямовану на вивчення певних класів диференціальних рівнянь (ДР), аналіз, експеримент з процесом, який описується відповідними ДР. Реалізувати дану дидактичну задачу викладач може за допомогою пакетів Mathematica, MathCAD, Maple та інших. Мовою пакетів створюється програмний продукт, який реалізує процес розв’язання ДР, візуалізує розв’язок у вигляді анімації. Студент управляє процесом шляхом змінювання параметрів ДР. Так, програма DFMACH [2] унаочнює траєкторію руху м’яча, кинутого горизонтально і який відскакує від вертикальної стінки. Студент може прослідкувати різні траєкторії в залежності від заданих ним швидкості руху, маси, прискорення.