Для определения физического смысла метриора придется обратиться к третьему важнейшему специфическому свойству пространственного вещества, оно вытекает из второго, заключающегося в существовании порядка положения. Чтобы соблюдать порядок положения, тела должны перемещаться, двигаться, только таким способом они могут вытеснять друг друга со своих мест. Благодаря этому в рассмотрение естественно вовлекается классическая механика с ее обширным кругом блестяще отшлифованных понятий и законов. Среди этих понятий нас в первую очередь должно интересовать то, что является мерой количества вещества применительно к перемещению, движению. Известно, что такой мерой служит масса m, измеряемая в килограммах.
Это понятие сложилось не сразу. Оно формировалось в течение нескольких поколений, начиная с Аристотеля и Герона и вплоть до Коперника, Гильберта, Кеплера. Непосредственные предшественники Ньютона (Декарт и Гюйгенс) еще путали понятия количества вещества и веса. Четко различил из Бальяни в 1638 г. Но дальше всех пошел Ньютон в своих "Началах", он массу определил как меру "количества материи" и успешно применил ее в своих законах механики [53, с.129].
Масса хорошо описывает третье важнейшее свойство метрического вещества – перемещение, движение. Ниже мы убедимся, что она пригодна также для полного определения двух первых главных свойств этого вещества – протяженности и порядка положения. Масса удовлетворяет и требованию специфичности. Следовательно, ее вполне можно избрать на роль экстенсора истинно простого метрического явления. Разумеется, будучи мерой количества метрического вещества (метрической формы материи), масса не в состоянии охарактеризовать всю материю в целом, все ее разнородные формы.
Зная экстенсор (метриор), нетрудно по изложенным выше правилам найти сопряженный с ним интенсиал (метриал). Обозначим его через ? , его размерность выражена в Дж/кг. В результате общая формула (238) приобретает следующий конкретный вид:
dQm = ? dm = dU (239)
Интересно, что в похожем виде работу и изменение энергии впервые записал У. Гиббс в 1874 г. применительно к химическим превращениям, не подозревая, что в действительности уравнение (239) имеет значительно более общее и важное значение, ибо определяет фундаментальное истинно простое метрическое явление. В условиях химических превращений используется аналогичная формула, но в ней так называемый химический потенциал ? имеет отличный от ? смысл (см. параграф 19 гл. XV).
Теперь нам предстоит углубить наше понимание величин m и ? и обсудить способы их измерения. Это будет сделано в настоящем и нескольких следующих параграфах. Начнем с выяснения смысла меры m , заменив ее для наглядности более привычной нам характеристикой – объемом ? , измеряемым в м3. Тогда сопряженный с этим новым условным экстенсором интенсиал ? будет иметь размерность давления (Н/м2). Условная подмена массы m на объем ? осуществляется таким образом, что
m = k? (240)
где k - коэффициент пропорциональности, величина которого зависит от единиц измерений. Этим мы как бы отождествляем массу m и объем ? , что позволяет о массе применительно к пространству говорить на более понятном языке – в терминах объема. При этом формула (239) приобретает вид
dQ? = ? d? = dU (241)
Здесь важно подчеркнуть, что объем ? ничего общего не имеет с упомянутым выше объемом V , к которому мы привыкли. Чтобы во всем этом лучше разобраться, рассмотрим механизм процесса заряжания системы объемом ? . Этот механизм представляет большой интерес, так как позволяет сделать много далеко идущих выводов и прогнозов.
Согласно ОТ, пустоты в природе не существует. Все, в целом непрерывное, пространство образовано метрическим веществом, обладающим свойством протяженности и состоящим из большого множества отдельных его порций, или квантов (метриантов). Это вещество может находиться либо в состоянии парена – нулевой активности, когда давление ? = 0, либо в активном, возбужденном состоянии, когда давление ? не равно нулю. В реальных условиях кванты активного пространства чередуются в каком-то порядке с квантами пассивного (парена). Поэтому если с помощью воображаемой контрольной поверхности мысленно выделить из окружающей среды некоторую систему объемом V , то в нее одновременно попадут метрианты обоих типов. Активные метрианты в составе соответствующих ансамблей образуют изучаемое тело.
На рис. 6 представлены два состояния системы, отмеченные индексами 1 и 2, причем активные метрианты изображены черными клеточками, а пассивные – светлыми. Под объемом ? следует понимать только совокупность объемов активных метриантов (черных клеточек). Отсюда должно быть ясно, почему надо четко различать экстенсор ? и суммарный контрольный объем V , а также почему объемом ? можно успешно подменять массу m .
Поскольку пространство непрерывно, постольку подвод к системе активных метриантов в количестве d? = ?2 - ?1 (рис. 6, а и б) неизбежно должен сопровождаться вытеснением соответствующего количества метриантов парена (рис. 6, б, светлые клеточки). При этом концентрация активных метриантов ?/V возрастает, что приводит к повышению давления ? . Увеличение давления есть следствие взаимодействия между сближающимися ансамблями системы. Аналогичная картина наблюдается при заряжании системы любым веществом, в этом отношении метрическое не является исключением из общего правила. Например, при подводе (увеличении) электрического заряда растет потенциал системы, при подводе термического вещества – температура и т.д. Специфическое отличие метрического явления от всех остальных заключается в том, что заряжание системы объемом происходит путем замещения пассивных квантов пространства активными. У всех остальных явлений при заряжании наблюдается простой подвод активных квантов вещества на общем фоне пространства, вложение ("вмазывание") этих квантов в кванты пространства.
Посмотрим теперь, как описанный механизм выглядит применительно к поршневому двигателю. Предположим для этого, что имеется цилиндр с поршнем (рис. 6, в), заполненный газом. Под объемом ? будем, как и прежде, понимать совокупность активных метриантов газа, расположенных между некоторыми контрольными сечениями I и II , выделяющими в цилиндре из общего объема V1 величину V . Парен обладает всепроникающими свойствами, поэтому при движении поршня последний воздействует только на активные метрианты, число которых (концентрация) в контрольном объеме V увеличивается, а парен свободно проходит сквозь тело цилиндра и поршня (рис. 6, г). В результате газ сжимается от объема V1 до объема V2 , но при этом одновременно возрастает как объем ? , так и давление ? . При этом следует иметь в виду, что пассивных метриантов (парена) неизмеримо больше, чем активных.
В противоположность этому в термодинамике рассматривается полный объем V . При таком подходе сжатие газа поршнем сопровождается повышением давления, но уменьшением объема V . Из-за этого работа входит в уравнение первого начала со знаком минус, чем она и отличается от работ всех остальных веществ. Причина такого отличия ранее была не ясна.
Должен признаться, что меня всегда смущало общепринятое толкование механических явлений, приводящее к формуле (43). Свой протест я очень робко выразил тем, что в книгах [13, с.29; 15, с.46] сказал об условном перетекании объема сквозь поршень. В настоящей монографии я постарался по возможности стряхнуть с себя груз традиционных представлений и последовательно оставаться на позициях ОТ. В свете новых представлений мы теперь с полным правом можем говорить о том, что в тепловом двигателе работу совершает активное метрическое вещество (активное пространство), а движущей силой указанного процесса служит давление, определяемое концентрацией этого вещества в некотором контрольном объеме.