связей, поэтому не могли пролить свет на загадочную неточность закона Трутона. Происхождение этой неточности всегда было неясно и вызывало много недоуменных вопросов. Теперь, наконец, становятся понятными как физический смысл, так и причина приближенности закона Трутона.
Во-вторых, ОТ позволяет внести в закон Трутона весьма существенное ограничение, связанное с действием закона экранирования седьмого начала. Это ограничение имеет общий смысл, относится ко всем степеням свободы системы и касается всех случаев определения теплового эффекта различных фазовых и химических превращений, реакций, процессов и т.д., поэтому на нем целесообразно остановиться более подробно; суть его заключается в следующем.
Любой реальный процесс протекает под действием определенной разности интенсиалов. Согласно закону экранирования (222), это связано с выделением или поглощением некоторого количества тепла диссипации (экранирования). Экранированная теплота в принципе неотличима от основной работы переносимого или увлеченного вермиора. Следовательно, при определении тепловых эффектов фазовых и химических превращений надо обязательно учитывать степень необратимости реального процесса, то есть количество экранированного в этом процессе тепла.
Например, в случае фазового превращения к увлеченному массой равновесному теплу превращения r? добавляется (при конденсации и затвердевании) или вычитается (при испарении и плавлении) экранированное тепло в количестве
RЭ? = Т?Э? = - ??фm? (303)
где ?Э? - экранированный вермиор, определяемый по формуле (223), m? - масса одной килограмм-молекулы вещества.
Неучет экранированного тепла rэ?, может привести к существенным ошибкам. Поэтому опыты по определению величины r? , надо проводить в условиях, близких к равновесным, когда ??ф ? 0 . В противном случае на величине r? скажется эффект неравновесности, который обнаружит себя в том, что r? при конденсации и затвердевании будет выше, чем при испарении и плавлении. Равновесное значение r? , представляющее собой физический коэффициент, заключено между двумя этими значениями. Кстати сказать, отсюда следует, что о степени неравновесности реального процесса можно судить по отклонению полученной в опыте величины r? от ее равновесного значения. При этом надо иметь в виду, что на величине r? может сказаться также неравенство нулю других интенсиалов.
Выведем теперь уравнения первого и второго законов Фарадея, регламентирующих явления электролиза. Для этого в уравнении переноса типа (116) положим равными нулю все разности интенсиалов, кроме электрического. В результате получается следующее новое теоретическое соотношение [18, с.345; 21, с.190]:
?m??? = Im/I? = m/? = ?m?/??? = KPm?/KP?? (304)
которое определяет первый закон Фарадея, установленный им экспериментально в 1833-1834 гг.: при электролизе за время t на электродах выделяются количества вещества m , пропорциональные количеству электрического заряда ? , прошедшего через то же время через электролит. Уравнение (304) закона отношения потоков ОТ дает точное значение коэффициента пропорциональности.
При последовательном соединении нескольких электролитов количества выделившихся веществ пропорциональны килограмм-эквивалентам этих веществ - таково содержание второго закона Фарадея. Под килограмм-эквивалентом понимается отношение ?/z , где ? - атомная или молекулярная масса иона, z - его валентность. Иными словами, величина ?/z представляет собой массу ансамбля, переносимого (увлеченного) единичной порцией (квантом) электрического заряда. Для этого случая из выражения (304) получаем
?m??? = ?/(z?F)
где ?F – электрический заряд, Ф, переносящий один килограмм-эквивалент вещества.
Из двух последних равенств имеем
m = ??/(z?F) (305)
Первый (304) и второй (305) эмпирические законы Фарадея составляют основу современной электрохимии. Согласно закону отношения потоков, они характеризуют эффект увлечения массы электрическим зарядом. Применить к ним закон тождественности не представляется возможным, так как ионы одинаковой валентности обычно сильно разнятся по массе. Согласно общей теории, равенства (304) и (305) справедливы только в том случае, когда напоры всех интенсиалов, кроме электриала ?? , равны нулю. В противном случае масса может переноситься также под действием разностей и других интенсиалов.
С помощью уравнений переноса и закона отношения потоков можно написать большое множество конкретных соотношений типа (301), (302) и (304), выражающих определенные закономерности развития различных реальных процессов. Большинство этих закономерностей еще нигде не используется и не имеет названий. Но несомненно, что многие из них со временем найдут практическое применение. Характерным примером тому служат известные законы Фарадея и Трутона. Добавление к найденным соотношениям приближенного закона тождественности дает возможность объединить однотипные явления в определенные группы, как это сделано Трутоном и Фарадеем.
В настоящей главе и ранее неоднократно упоминаются так называемые физические коэффициенты. Согласно ОТ, физическими коэффициентами служат коэффициенты при экстенсорах и интенсиалах в уравнениях состояния и переноса, а также в уравнениях более высоких порядков. Например, к ним относятся коэффициенты состояния, емкости и проводимости и т.п., а также комбинации из указанных характеристик типа ? , R , r , ?F и т.д. Важно подчеркнуть, что все они суть функции экстенсоров и, следовательно, в принципе являются величинами переменными. В определенных условиях их можно условно, с большим или меньшим приближением к действительности, рассматривать как величины постоянные; часто это приводит к существенному упрощению задачи, например, в случае идеального тела (см. параграф 7 гл. X). Хорошие результаты при этом дают осредненные значения коэффициентов в соответствующем диапазоне изменения параметров.
Физическими коэффициентами не являются главные количественные характеристики ансамбля - экстенсоры, а также энергия, служащая производным свойством первого порядка, интенсиалы, служащие производными свойствами второго порядка, работа и некоторые другие величины. Вместе с тем экстенсоры содержат в себе характеристики, которые по справедливости могут быть названы фундаментальными, или абсолютными, или мировыми физическими постоянными (константами). Таковыми служат минимальные порции (кванты) различных простых веществ, например электрического (заряд электрона, или электриант е ), вермического (вермиант ? ), вибрационного (постоянная Планка h ) и т.д. Не исключено, что и эти константы способны претерпевать какие-то изменения со временем [18, с.196; 21, с.242]. Все остальные коэффициенты не являются константами в истинном смысле этого слова [ТРП, стр.306-310].
7. Теорема интенсиалов.
Для завершения краткой иллюстрации различных способов применения начал рассмотрим одну весьма любопытную теорему, которая характеризует определенные тенденции развития самопроизвольных природных процессов. Теорема гласит, что в изолированной неравновесной системе среднее значение любого данного интенсиала способно и вынуждено самопроизвольно изменяться за счет других интенсиалов; количественная сторона и направление этого изменения определяются конкретными свойствами системы. Докажем эту теорему с помощью семи начал ОТ [20, с.240; 21, с.176].
Дана реальная изолированная неравновесная система, обладающая n степенями свободы и удовлетворяющая условию (298). В объеме такой системы происходит непрерывное самопроизвольное перераспределение всех n веществ и постепенное выравнивание всех n интенсиалов. Этот процесс сопровождается следующими эффектами.
Согласно уравнению (31) первого начала ОТ, суммарная энергия системы остается неизменной, то есть
dU = 0 ; U = const .
Согласно уравнению (50) второго начала ОТ, общее количество любого i-того вещества системы сохраняется постоянным, то есть