Выбрать главу

В иностранной печати указывалось, что к 1960 году должны быть построены все типы морских кораблей с использованием атомной энергии. Первый легкий атомный крейсер предполагают закончить к 1959 году, а первый атомный авианосец ввести в строй в 1961 году. Проектируется и строится атомный двигатель мощностью в 22 000 л.с. для танкера водоизмещением 38 000 т. Танкер намечается ввести в эксплуатацию в середине 1959 года.

Возможно также создание атомных локомотивов и самолетов. Уже поднимался в воздух самолет, в носовой части которого установлен маломощный экспериментальный ядерный реактор. В целях безопасности населения реактор работал только тогда, когда самолет пролетал над специально отведенной территорией. Взлет и посадка осуществлялись с остановленным реактором. Приняты были также меры предосторожности, исключающие взрыв реактора при аварии самолета.

Глава 2.

ТЕРМОЯДЕРНЫЕ РЕАКЦИИ

Теперь, когда читатель познакомился с атомным оружием и атомной энергией, ему будет легче понять сущность термоядерных реакций и устройство термоядерного оружия, основанного на использовании этих реакций.

Энергия ядерных реакций

Ядерные частицы — протоны и нейтроны обычно объединяют общим названием — нуклоны. Общее число нуклонов в ядре, как мы уже знаем, называется массовым числом. Массовое число, округленное до целого числа, равно атомному весу элемента (точнее атомному весу определенного изотопа), а число протонов равно его порядковому номеру в периодической системе Д. И. Менделеева.

Ядро легкого изотопа водорода (элемент № 1) является протоном. Это — единственный изотоп, в составе ядра которого нет нейтронов.

В ядрах других изотопов водорода — дейтерия и трития — наряду с протонами имеются и нейтроны.

Дейтерий содержится в природном водороде и, следовательно, во всех химических соединениях, содержащих водород, в частности в воде.

Тритий распадается, испуская бета-частицы. Период его полураспада равен 12,4 года. В природе тритий имеется в ничтожных количествах; он образуется в результате действия космических лучей. С кислородом тритий образует воду, которая в виде дождя или снега падает на землю, примешиваясь в ничтожном количестве к воде, находящейся на земной поверхности. Опыты показали, что тритий содержится лишь в верхних слоях воды океанов (1 атом трития приходится на миллиард миллиардов атомов водорода) и отсутствует в воде, взятой с глубины более 100 м.

Изотопы одного элемента обладают одинаковыми химическими свойствами. Например, при горении все изотопы водорода образуют воду. В зависимости от изотопа водорода, входящего в состав воды, различают обычную, тяжелую и сверхтяжелую (тритиевую) воду.

Сравним теперь ядерные реакции с химическими и познакомимся с возможными типами реакций.

Химические реакции могут идти одновременно в прямом и обратном направлении. Так, при горении газа водорода происходит химическая реакция соединения водорода с кислородом с образованием воды. Одновременно с этой реакцией происходит и обратная реакция: некоторые молекулы воды распадаются на водород и кислород, то есть происходит реакция разложения воды. Однако при горении водорода число распадающихся молекул воды совершенно ничтожно по сравнению с числом молекул воды, образующихся в результате горения. В таких случаях обычно пренебрегают обратным процессом и учитывают только прямой процесс.

Подобное явление наблюдается и при ядерных реакциях. В недрах Солнца и звезд происходит ядерная реакция, в результате которой из ядер атомов водорода образуются ядра атомов гелия. При этом выделяется огромная энергия. Принципиально возможен и обратный процесс — разложение ядра гелия на 4 нуклона. Для этого процесса требуется затрата энергии. Одновременно с соединением ядер атомов водорода в недрах Солнца и звезд происходит и распад атомов гелия, но число распадающихся атомов ничтожно по сравнению с числом соединяющихся. Поэтому этим медленным обратным процессом обычно пренебрегают. Однако при изменении температуры и других условий возможно повышение роли обратного процесса как в химических, так и в ядерных реакциях. Практически весь процесс может даже изменить свое направление.

При различных химических реакциях может выделяться энергия в виде тепла (например, при реакции горения угля) или энергия может поглощаться (например, при разложении окиси железа на металлическое железо и кислород). Химические реакции, которые проходят с выделением тепла, называют экзоэнергетическими или экзотермическими, а реакции, идущие с поглощением тепла, — эндоэнергетическими или эндотермическими.