Выбрать главу

Энергия движущихся тел, например энергия движения электропоезда или летящего снаряда, называется кинетической энергией. Виды энергии, не связанные с видимым движением, называют потенциальной энергией. На рис. 10 показаны три положения гири — на шкафу, на полке и на полу. Когда мы, производя работу, поднимаем гирю с пола на уровень шкафа, то затраченная нами энергия не пропадает — она превращается в потенциальную энергию гири. Эта потенциальная энергия, связана с существованием силы притяжения гири к земле. Если устранить силу, не дающую гире упасть, то потенциальная энергия гири полностью или частично перейдет в кинетическую энергию.

Рис. 10. Схемы перехода потенциальной энергии в кинетическую:
а — потенциальной энергии поднятой гири в кинетическую, при падении гири; б — потенциальной химической энергии водорода и кислорода в тепло при их превращениях; в — потенциальной ядерной энергии протонов и нейтронов в кинетическую энергию и энергию излучения при образовании и делении урана 235

При падении гири со шкафа на полку лишь часть запасенной потенциальной энергии перейдет в кинетическую. При падении же гири на пол весь запас потенциальной энергии окажется израсходованным.

Когда происходит реакция соединения водорода с кислородом, освобождается потенциальная (скрытая химическая) энергия, которая может перейти в тепло, электрическую, кинетическую или другие виды энергии. При этом потенциальная энергия может лишь частично перейти в тепло, если водород с кислородом образуют перекись водорода, как схематически показано на рис. 10,б. Если водород с кислородом образуют воду, то потенциальная химическая энергия полностью переходит в тепло или другие виды энергии. В этом примере потенциальная энергия связана с наличием междуатомных химических сил притяжения, имеющих электрическую природу.

Так как нуклоны притягиваются друг к другу с огромной силой, то всегда при образовании из них различных ядер освобождается потенциальная ядерная энергия, которая переходит в тепло, лучистую и другие виды энергии.

Если 92 протона и 143 нейтрона соединятся, образовав ядро урана 235, то при этом выделится не вся потенциальная ядерная энергия протонов и нейтронов, как схематически показано на рис. 10,в. Чтобы израсходовалась вся потенциальная энергия протонов и нейтронов, они должны образовать ядра ксенона 141 и стронция 92. Ясно, что в ядре урана 235 еще заключается некоторый запас потенциальной ядерной энергии, которая и выделяется при его расщеплении с образованием ядер ксенона 141, стронция 92 и трех нейтронов. При этом потенциальная ядерная энергия переходит в кинетическую энергию движения образовавшихся частиц и в другие виды энергии.

Рассмотренные три примера перехода потенциальной энергии в другие виды энергии имеют много общих черт. Это указывает на существование общего закона природы, управляющего подобными процессами.

Рассмотрим теперь процессы перехода потенциальной химической и ядерной энергии в другие виды энергии с иной точки зрения.

Ясно, что чем больше химические силы, связывающие атомы в молекуле вещества, тем большее количество энергии выделится при образовании соответствующих химических соединений и тем устойчивее будут молекулы этих соединений. Так, химические силы, связывающие атомы водорода и кислорода в молекуле воды, весьма велики, вследствие чего при образовании воды из водорода и кислорода выделяется большая энергия — около 30 000 кал тепла на 1 г водорода. Эта энергия называется энергией связи атомов.

Химические силы, действующие между водородом и кислородом в молекуле перекиси водорода, несколько меньше. При образовании перекиси водорода из водорода и кислорода на каждый грамм участвующего в реакции водорода выделится только около 20 000 кал. Значит, молекулы перекиси водорода менее устойчивы, чем молекулы воды. Именно поэтому перекись водорода самопроизвольно может разлагаться на кислород и воду.

Одним из важнейших законов природы является закон сохранения энергии. Этот закон гласит: энергия не создается из ничего и не исчезает; она только может переходить из одного вида в другой. Из этого закона мы можем сделать практический вывод для нашего примера. Если на 1 г водорода при образовании воды выделяется 30 000 кал тепла, а при образовании перекиси водорода — 20 000 кал, то, следовательно, согласно закону сохранения энергии при разложении перекиси водорода с образованием воды и кислорода выделится 10 000 кал тепла на 1 г водорода.