Выбрать главу

Ионизирующих столкновений происходит много. Поэтому общая потеря энергии на ионизацию за очень короткое время достигает большой величины. Применяемая для обстрела ядра быстролетящая альфа-частица обладает энергией порядка 5–6 Мэв. На ионизацию каждой молекулы азота или кислорода воздуха расходуется приблизительно 33 эв. Следовательно, одна частица производит десятки и сотни тысяч ионизаций. Вследствие ионизационных потерь энергии путь, проходимый заряженными частицами в веществе — так называемый пробег частиц, оказывается весьма коротким (для альфа-частиц в воздухе он составляет 5–7 см), и на этом пути обычно не происходит ядерное взаимодействие.

Таким образом, при энергиях бомбардирующих частиц ниже высоты «барьера» ядерное взаимодействие почти совершенно отсутствует, а при энергиях бомбардирующих частиц выше «барьера» ядерное взаимодействие хотя и проявляется, но далеко не может восполнить затраты энергии на ионизацию. Поэтому для осуществления, например, упоминавшейся ядерной реакции взаимодействия ядра протона с атомом лития при обычных температурах необходимо бомбардировать литий специально ускоренными для этой цели протонами, как это было сделано в 1932 году в Англии и в СССР. Осуществление этой ядерной реакции было первым экспериментальным подтверждением закона взаимосвязи массы и энергии.

Так как в данном случае подавляющая часть ускоренных протонов растрачивает свою энергию на ионизацию атомов лития и поэтому не принимает участия в ядерной реакции, то освобождающаяся при этих опытах ядерная энергия оказывается гораздо меньше затрат энергии на ускорение пучка протонов.

Положение существенно меняется при сверхвысоких температурах порядка миллионов градусов. При таких температурах атомы самых легких элементов — водорода, гелия, лития — оказываются полностью ионизированными, то есть среда, содержащая такие легкие элементы, состоит из атомных ядер и свободных электронов, находящихся в тепловом движении. В этих условиях заряженные частицы не расходуют своей энергии на ионизацию. Сама же энергия частиц при сверхвысоких температурах резко возрастает. Так, энергия теплового движения при температуре в 1 млн. градусов достигает 3 млн. кал, а при 10 млн. градусов — 30 млн. кал на каждый грамм водорода.

Совокупность указанных обстоятельств создает при сверхвысоких температурах необходимые условия для проведения термоядерных реакций в больших масштабах. При этом, чем более тяжелые элементы участвуют в реакции, тем более высокая требуется температура и тем труднее ее поддерживать. Это объясняется тем, что «барьер», который необходимо преодолеть заряженной частице, чтобы проникнуть в ядро, повышается при возрастании заряда ядра и, следовательно, порядкового номера. Кроме того, для элементов с большими порядковыми номерами становится все труднее обеспечить полную ионизацию, отсутствие которой приводит к возникновению ионизационных потерь и понижению температуры.

Следует отметить, что понятие о термоядерных реакциях существовало в науке задолго до того, как последние были практически осуществлены. В 1936 году учеными была разработана теория, объяснившая происхождение энергии звезд и, в частности, Солнца сложным рядом термоядерных реакций с участием водорода, углерода, азота и кислорода, которые приводят в конечном счете к образованию гелия. По современным представлениям преобразование ядер водорода в ядра гелия (синтез одного ядра гелия из четырех ядер водорода) является основным источником энергии, излучаемой звездами и Солнцем. Для краткости нередко говорят об образовании из водорода гелия, подразумевая образование из ядер водорода ядер гелия.

Познакомимся с термоядерными реакциями, происходящими в недрах Солнца.

Термоядерные солнечные реакции

Далеко не каждый знает, что Солнце — тело не твердое и не жидкое, а газообразное. Солнце представляет собой гигантский огненный шар, состоящий наполовину из водорода. Так как водород является легчайшим из всех известных элементов, то при любых температурах движущиеся молекулы, атомы или ядра атомов водорода обладают наибольшими скоростями. В недрах Солнца царят огромное давление и колоссальная температура, достигающая приблизительно по новым данным 13 млн. градусов. Давление здесь столь огромно, что даже газообразный водород сжат в такой степени, что его плотность в 7 раз больше плотности свинца.

В таких условиях в недрах Солнца, как и в недрах звезд, происходят термоядерные реакции взаимодействия ядер атомов водорода с другими элементами. Приведем один из возможных циклов солнечных реакций (табл. 3).