Выбрать главу

Глава 3.

ТЕРМОЯДЕРНОЕ ОРУЖИЕ

Для осуществления термоядерных реакций на Земле необходимо создать с помощью какого-то источника сверхвысокие температуры, окружив этот источник легкими ядрами, способными вступать в ядерное взаимодействие. Таким источником может, в частности, служить взрыв атомной бомбы. На этом принципе и устроена так называемая водородная бомба. Познакомимся с ее устройством.

Водородная бомба

На рис. 13 приведена принципиальная схема устройства водородной бомбы. В центре помещается атомная бомба 1, при взрыве которой создается очаг высокой температуры (выше 10 млн. градусов). Атомная бомба окружена веществом 2, состоящим из атомов с легкими ядрами, которые вступают в термоядерную реакцию под воздействием высокой температуры, развивающейся при взрыве атомной бомбы.

Рис. 13. Схема водородной бомбы:
1 — атомная бомба; 2 — смесь дейтерия, трития и лития; 3 — отражатель; 4 — оболочка бомбы

В отличие от урана и плутония термоядерное горючее (дейтерий, тритий, литий и др.) не имеет критической массы. Поэтому размеры окружающего атомный «запал» легкого ядерного взрывчатого вещества принципиально не ограничены.

Деление всех ядер, содержащихся в 1 кг урана 235 или плутония, сопровождается выделением свыше 20 000 млрд. кал. Такая же энергия может выделиться при полном превращении в гелий всего около 150 г водорода. Очевидно, что энергия, выделяющаяся при взрыве водородной бомбы, вес которой не ограничен критической массой, может оказаться в сотни и тысячи раз больше, чем энергия взрыва атомной бомбы. Это, конечно, не значит, что радиус разрушения вследствие взрыва водородной бомбы будет также в несколько сотен и тысяч раз превышать радиус разрушений, вызванных взрывом атомной бомбы. В действительности радиус разрушений от взрыва водородной бомбы возрастает не столь быстро. Например, радиус разрушений при взрыве водородной бомбы с тротиловым эквивалентом 10 млн. т будет превышать радиус разрушений ударной волной от взрыва атомной бомбы с тротиловым эквивалентом 10 000 т не в 1000 раз, а лишь примерно в 10 раз.

При конструировании водородной бомбы добиваются ускорения развития взрыва по сравнению со скоростью разлета заряда, чтобы повысить коэффициент использования плутония и термоядерного горючего.

Как указывается в иностранной печати, к преимуществам водородной бомбы по сравнению с атомной относятся:

1) сравнительно небольшая стоимость поражения единицы площади;

2) наличие значительно бóльших запасов в природе водорода и лития по сравнению с ураном и торием;

3) практическое отсутствие верхнего предела величины взрывного заряда, что позволяет изготавливать водородные бомбы с большими тротиловыми эквивалентами.

Недостатки водородной бомбы:

1) трудность тактического применения водородной бомбы;

2) невозможность длительного хранения водородных бомб, содержащих тритий, вследствие самопроизвольного радиоактивного распада этого изотопа водорода;

3) необходимость очень надежной защиты дорогостоящих самолетов — носителей термоядерного оружия, складов этого оружия и т. п.

Возможные термоядерные реакции

Поскольку время от начала взрыва до разлета вещества, заключенного в бомбе, составляет величину порядка миллионных долей секунды, то для осуществления водородной бомбы необходимо выбрать такие реакции, средняя продолжительность которых при температурах и плотностях, создаваемых при атомном взрыве, составляет величину тоже не более миллионных долей секунды.

В литературе подробнее всего обсуждались термоядерные реакции водорода, его тяжелых изотопов: дейтерия и трития, и двух изотопов лития: лития 6 и лития 7. В табл. 4 приводится перечень этих реакций с обозначением их теплового эффекта в миллиардах калорий на грамм-атом[8], тротилового эквивалента в тысячах тонн на 1 кг заряда и продолжительности реакции при температуре 20 млн. градусов.

При рассмотрении возможностей широкого использования тех или иных ядерных реакций в водородной бомбе следует учесть ряд обстоятельств. Важнейшими из них являются: доступность и дешевизна «взрывчатого вещества», возможность возбуждения термоядерных реакций при температурах атомного «запала» и величина энергии при протекании данной реакции. Чем больше эта энергия, тем выше поднимается и легче поддерживается температура и тем сильнее действие взрыва.

вернуться

8

Грамм-атом — такое количество граммов вещества, которое численно равно его атомному весу. Так, 1 грамм-атом водорода весит 1 г, гелия — 4 г, урана 235–235 г.