Нейтроны, получающиеся при делении плутониевого запала (первая фаза), вступают в знакомую нам реакцию с литием:
Образующийся в результате этой реакции тритий вступает в термоядерную реакцию с дейтерием (вторая фаза). Одновременно с этим протекает реакция соединения атомных ядер лития и дейтерия.
Этот тип двухфазной бомбы имеет большие преимущества по сравнению с дейтериево-тритиевой бомбой. Гидрид лития в отличие от трития устойчив и может храниться сколько угодно времени. Производство его обходится значительно дешевле, чем производство трития.
Некоторая часть термоядерного заряда может состоять также из соединения с литием сверхтяжелого водорода — трития. Таким образом, в качестве термоядерного горючего стали использовать гидриды лития.
Если при взрыве однофазной бомбы температура повышается до 10 млн. градусов, то при взрыве двухфазной бомбы температура возрастает еще значительнее — до нескольких десятков миллионов градусов. Такая температура может обеспечить протекание более трудновозбуждаемых ядерных реакций.
Кроме того, при образовании ядер гелия из ядер дейтерия и трития вылетает много быстрых нейтронов. Для сравнения заметим, что если в реакции синтеза будет участвовать 1 кг смеси дейтерия и трития, то нейтронов выделится раз в 30 больше, чем при делении атомных ядер 1 кг урана или плутония. Энергия нейтронов, выделившихся при образовании гелия, в несколько раз больше энергии нейтронов, освобождающихся при делении.
Быстрые нейтроны, образующиеся в зоне термоядерной реакции, оказалось возможным использовать для повышения мощности взрыва, если термоядерный (водородный) заряд поместить в оболочку из сравнительно дешевого природного урана 238. Таким образом, появилась возможность создания еще более сложных бомб, в которых процесс происходит в три фазы. Примером трехфазной бомбы является так называемая урановая термоядерная бомба, именуемая иногда водородно-урановой бомбой. Эта трехфазная бомба имеет запалы в виде плутониевых зарядов, взрыв которых (первая фаза) вызывает термоядерную реакцию в гидриде лития (вторая фаза).
Быстрые нейтроны, образующиеся при делении плутония и при реакции дейтерия с тритием, вызывают деление урана 238 (третья фаза), из которого сделана оболочка трехфазной бомбы.
Имеются сообщения в иностранной печати о схеме построения трехфазной термоядерной бомбы, в которой сначала происходит расщепление ядер, затем синтез и снова расщепление. Такая схема приведена на рис. 16.
В центральной части бомбы расположен гидрид лития, вокруг которого помещается несколько плутониевых зарядов. Оболочка бомбы изготовлена из урана 238 или из природного урана. Взрыв трехфазной бомбы начинается с детонации плутониевых запалов (а) под действием нейтронов, испускаемых бериллиевыми источниками. Далее происходит термоядерная реакция в гидриде лития (б). Наконец быстрые нейтроны вызывают деление урана (в).
Возникает вопрос: почему в трехфазной бомбе происходит реакция деления урана 238?
Это объясняется тем, что в урановую оболочку попадает мощный поток нейтронов, образующихся в результате реакции дейтерия с тритием. Энергия и скорость этих нейтронов значительно превосходит энергию и скорость нейтронов, образующихся при делении урана. Такие быстрые нейтроны, сталкиваясь с ядрами урана 238, успешно производят их деление.
Несколько плутониевых «запалов» применяется в этой бомбе с целью быстрого подъема температуры гидрида лития, чтобы обеспечить возникновение в нем термоядерной реакции. Одновременность взрыва всех запалов обеспечивается специальной электрической системой. Включение электрического тока производится автоматически барометрическим или иным устройством. В корпусе бомбы имеются отверстия, в которые незадолго до взрыва вставляют нейтронные (бериллиевые) источники, один из которых показан на рисунке.