Выбрать главу

Ториевые минералы встречаются в ряде мест, причем торий встречается в земной коре чаще, чем уран.

Ядерные реакторы до последнего времени служили главным образом для производства ядерного горючего — плутония из природного урана. Советский Союз практически указал миру другое использование ядерных реакторов — для создания промышленных атомных электростанций.

Тритий

Сверхтяжелый водород — тритий в природе существует в ничтожных количествах. Он образуется в верхних слоях атмосферы под влиянием космических лучей.

Основной реакцией образования трития является реакция быстрых космических нейтронов с азотом:

7N14+0n1=6C12+1H3

Однако накопиться в заметных количествах тритий не может, так как является радиоактивным изотопом с периодом полураспада 12,4 года. При распаде он выбрасывает бета-частицу, превращаясь в гелий:

1H3=2He3+-1β0

Искусственное получение трития основано на реакции медленных нейтронов с ядрами легкого изотопа лития 3Li6:

3Li6+0n1=2Не4+1Н3

Для получения трития в больших количествах природный литий, являющийся смесью двух изотопов — лития 6 и лития 7, помещают в ядерный реактор, используя его вместо части компенсирующих стержней. Под действием медленных нейтронов литий 6 превращается постепенно в тритий и гелий.

Получающийся в реакторе тритий частично растворяется в литии и образует с ним химическое соединение — гидрид лития, в котором с атомом лития соединен атом трития (LiT). Из гидрида лития выделить тритий очень трудно, так как это устойчивое соединение даже при сильном нагревании разлагается с трудом. Поэтому в реакторе невыгодно облучать металлический литий. Раньше облучали соль лития — фтористый литий (LiF). В последнее время применяют сплавы лития с магнием, из которых тритий выделить легче.

Тритий — газ. Для хранения и употребления его обычно переводят в тритиевую воду (Т2О), которую получают сжиганием трития в кислороде или в воздухе.

Получение трития в ядерных реакторах сопряжено с уменьшением производства плутония, так как введение лития с целью получения трития вызывает дополнительный расход ядерного горючего без соответствующего образования плутония. Производство в ядерном реакторе 1 кг трития сопряжено с уменьшением производства плутония примерно на 80 кг. Кроме того, получение трития требует огромных затрат энергии и сырья — урана.

В период начала работ по созданию термоядерного оружия в США 1 кг трития стоил 500 млн. долларов. Для получения 1 кг трития требовалось 11–12 т металлического урана; для ежедневного производства 2 г трития нужно было 10 кг урана 235 и реактор мощностью в 1 млн. квт. Гигантский завод, производящий тритий, должен был работать два с половиной года, чтобы создать количество трития, необходимое для одной водородной бомбы (очевидно, дейтериево-тритиевой). Теперь производство трития обходится значительно дешевле. Но и в настоящее время стоимость трития в США еще в тысячи раз выше стоимости газообразного дейтерия и составляет сотни тысяч долларов за 1 кг.

Дейтерий

Природная вода, в водороде которой обычно содержится 0,014% дейтерия, является самым удобным сырьем для получения дейтерия. Вода доступна, и ее запасы практически неисчерпаемы.

Получение дейтерия в чистом виде связано с необходимостью разделения изотопов водорода.

Задача разделения изотопов водорода несравненно проще, чем других элементов. В самом деле, дейтерий тяжелее обычного водорода в 2 раза, тогда как, например, изотоп урана U238 тяжелее изотопа U235 менее чем на 1,3%. Поэтому ряд физических свойств (плотность, теплопроводность и др.) соединений тяжелого и легкого водорода заметно различаются, тогда как у соединений двух изотопов урана такие различия практически отсутствуют. Так, например, плотность тяжелой воды D2O равна 1,1079 г/см3, кипит она при 101,42° C и замерзает при 3,802° C.

Благодаря такому различию в свойствах тяжелая вода может быть сравнительно просто отделена от обычной воды перегонкой (за счет различия в температурах кипения), а также электролизом. Таким образом, выделять дейтерий из воды в концентрированном виде можно различными методами.