Выбрать главу
Рис. 37. Схема распространения радиоактивных продуктов термоядерного взрыва:
1 — огненный шар; 2 и 3 — положение радиоактивного облака, поднимающегося в стратосферу, 4 — пути распространения радиоактивной пыли; 5 — пути медленного оседания этой пыли; 6 — облака; 7 — атмосферные осадки, увлекающие радиоактивные вещества

Вторым источником радиоактивного заражения являются выпадающие из радиоактивного облака остатки непрореагировавшего ядерного горючего бомбы (урана 235, урана 233 или плутония 239).

Расщепляющиеся материалы этих веществ испускают преимущественно альфа-лучи. Распад длится многие тысячи и миллионы лет. Их излучение много слабее, чем у «осколков» деления, несмотря на то, что вес может быть большим (например, 90% веса всего заряда). Количество непрореагировавшего заряда определяется конструкцией бомбы (коэффициентом использования ядерного горючего). Выпадая на местность, непрореагировавшее ядерное горючее почти не влияет на характер и степень заражения из-за малой излучающей способности урана или плутония и вследствие малой проникающей способности испускаемых ими альфа-частиц.

Третьим источником заражения являются радиоактивные изотопы, возникающие при поглощении нейтронов ядрами различных элементов, входящих в состав почвы, воды, воздуха, зданий и различных материалов в районе взрыва. Большинство образующихся при этом радиоактивных изотопов распадается сравнительно быстро.

Исключением является долгоживущий углерод 14, который образуется при реакции нейтронов с азотом, содержащимся в больших количествах в воздухе:

0n1+7N14=6C14+1H1

Углерод 14 распадается очень медленно, его период полураспада равен 5700 лет. При распаде он испускает бета-частицы сравнительно малой энергии, которые легко задерживаются одеждой и не могут проникнуть даже через бумагу толщиной 0,1 мм. Атомы углерода 14 в свободном виде существуют недолго. Встретившись с кислородом, они окисляются с образованием углекислого газа.

При захвате нейтронов натрием, цинком, кобальтом и некоторыми другими элементами образуются изотопы, которые при распаде испускают жесткие гамма-лучи и представляют опасность для человека. Поэтому взрыв термоядерной бомбы в той местности, где почва содержит много вышеуказанных элементов, а также кальция, может быть особенно опасным в отношении радиоактивного заражения.

Кобальт и цинк редко встречаются в почве в значительном количестве. Поэтому возникла мысль о введении этих элементов в конструкцию термоядерных бомб с целью усиления радиоактивной зараженности при взрыве бомбы. Получающиеся при этом радиоактивные изотопы могут стать четвертым источником радиоактивного заражения.

Вводить кобальт в бомбу проще всего в виде металла, из которого можно изготовить прочную оболочку. При толщине кобальтовой оболочки около 5 см некоторая часть нейтронов, освобождающихся при взрыве термоядерной бомбы, будет захватываться ядрами обычного кобальта 59 с образованием радиоактивного изотопа кобальта 60. Период полураспада этого изотопа — более 5 лет. Распадаясь, он наряду с бета-частицами испускает жесткие гамма-лучи. Бомбу описанной конструкции называют кобальтовой.

Если оболочку термоядерной бомбы изготовить из металлического цинка, то, захватывая нейтроны, он будет превращаться в радиоактивный изотоп — цинк 65. Его период полураспада 250 суток. При распаде он, так же как и кобальт 60, испускает бета-частицы и жесткие гамма-лучи. Такую бомбу можно назвать цинковой.

Четыре источника возможного радиоактивного заражения местности могут возникнуть практически одновременно, но действие каждого из них и суммарной зараженности не всегда одинаково. Степень зараженности зависит от вида взрыва, типа и калибра бомбы, метеорологических условий, от характера местности и предметов.

При воздушных взрывах атомных бомб в городах Хиросима и Нагасаки зараженность местности была незначительна, не было зарегистрировано не только ни одного смертельного случая, вызванного радиоактивной зараженностью, но даже ни одного случая тяжелого поражения человека.