Возвращаясь к плоскому существу и к его представлению о мире и разбирая его отношение к трехмерному миру, мы видим, что двумерному и плоскому существу будет очень трудно понять всю сложность явлений нашего мира, как она является для нас. Оно (плоское существо) привыкло представлять себе мир чересчур простым.
Принимая разрезы тела за тела, плоское существо будет сравнивать их только в отношении длины и большей или меньшей кривизны, то есть для него более или менее быстрого движения. Различий, существующих между вещами в нашем мире, для него быть не могло бы.
Функции предметов нашего мира были бы совершенно недоступны его пониманию, непостижимы, " сверхъестественны ".
Представим себе, что на плоскость двумерного существа положена монета и поставлен огарок свечи одного диаметра с монетой. Для плоского существа это будут два равных круга, то есть две движущиеся линии абсолютно тождественные, никакого различия между ними он никогда не найдет. Функции монеты и свечи в нашем мире -- это для него совершенно terra incognita. Если мы только попробуем представить себе, какую огромную эволюцию должно проделать плоское существо, чтобы понять функции монеты и свечи и различие этих функций, -- мы поймем, что разделяет плоский мир от трехмерного. Разделяет, прежде всего, полнейшая невозможность даже представить на плоскости что-нибудь похожее на трехмерный мир с разнообразием его функций.
Свойства явлений плоского мира будут крайне однообразны, они будут различаться порядком появлений, длительностью, периодичностью. Тела и предметы этого мира будут плоски и однообразны, как тени, то есть как тени совершенно разных предметов, которые нам представляются одинаковыми. Даже если бы плоское существо своим сознанием вступило в общение с нашим сознанием, то оно все-таки не было бы в состоянии понять все разнообразие и богатство явлений нашего мира и разнообразие функций наших предметов.
Плоские существа не были бы в состоянии усвоить себе самых обыкновенных для нас понятий.
Для них было бы очень трудно понять, что явления одинаковые для них, на самом деле разные -- и что, с другой стороны, явления совершенно отдельные для них на самом деле части одного большого явления и даже одного предмета или одного существа.
Это последнее будет одно из самых трудных вещей для понимания плоского существа. Если мы предположим, что наше плоское существо живет на горизонтальной плоскости, пересекающей вершину дерева параллельно земле, то для этого существа разрезы ветвей будут представляться совершенно отдельными явлениями или предметами. Идея дерева и его ветвей никогда не может представиться его воображению.
Вообще понимание даже самых основных и простых вещей нашего мира будет бесконечно долгим и трудным для плоского существа.
Оно должно совершенно перестроить свои представления о пространстве и времени. Это должно быть первым шагом. Пока это не сделано, нет ничего. Пока всю нашу Вселенную плоское существо представляет во времени, то есть относит ко времени все, лежащее по сторонам его плоскости, оно никогда ничего не поймет. Чтобы начать постигать "третье измерение", двумерное существо, живущее на плоскости, должно представить себе пространственно свои временные понятия, то есть перенести свое время в пространство.
Чтобы получить только искру правильного представления о нашем мире, оно должно будет совершенно перестроить все свои идеи о мире, -- переоценить все ценности, пересмотреть все понятия, объединяющие понятия разъединить, разъединяющие соединить и, главное, создать бесконечно много новых.
Если мы поставим на плоскость двумерного существа пять пальцев нашей руки, то это будет для него пять отдельных явлений.
Попробуем представить себе мысленно, какую огромную умственную эволюцию должно проделать плоское существо, чтобы понять, что пять отдельных явлений на его плоскости -- это концы пальцев руки большого, деятельного и разумного существа -- человека.
Если мы ясно представим себе всю трудность нарисовать всего человека, со всем богатством его жизненных функций и психической и духовной жизни, по одному только отпечатку его пальцев, то мы поймем трудность постигнуть трехмерный мир для плоского существа.
Разобрать подробно шаг за шагом, как плоское существо переходило бы к пониманию нашего мира, лежащего для него в области таинственного третьего измерения, то есть частью в прошедшем, частью в будущем, -- было бы в высшей степени интересно... но, может быть, совершенно не нужно. Чтобы постигнуть мир трех измерений, плоское существо прежде всего должно перестать быть двумерным -- то есть должно само стать трехмерным, или, иначе говоря, должно почувствовать интересы жизни в трехмерном пространстве. Почувствовав интересы этой жизни, оно уже этим самым отойдет от своей плоскости и никогда не будет в состоянии на нее вернуться. Все больше и больше входя в круг бывших для него раньше совершенно непостижимыми идей и понятий, оно уже станет не двумерным существом, а трехмерным.
ГЛАВА VII
Невозможность математического определения измерений. -- Почему математика не чувствует измерений? -- Полная условность изображения измерений степенями. -- Возможность представить себе все степени на линии. -- Кант и Лобачевский. -- Различие неэвклидовой геометрии и метагеометрии. -- Где должны мы искать объяснения трехмерности мира, если верны идеи Канта? -- Не заключаются ли условия трехмерности мира в нашем воспринимательном аппарате, в нашей психике?
Разобрав теперь "отношения, которые несет в себе самом наше пространство", мы должны вернуться к вопросу о том, что же в действительности представляют собой измерения пространства? И почему их три?
Самым странным для нас должно представляться то, что мы не можем определить трехмерность математически.
Мы плохо сознаем это, и это кажется парадоксом, потому что мы все время говорим об измерении пространства, но это факт. Математика не чувствует протяжений пространства.
Возникает вопрос, как может такое тонкое орудие анализа, как математика, не чувствовать измерений, если они представляют собой какие-то реальные свойства пространства.
Говоря о математике, мы прежде всего должны признать, как основную предпосылку, что всякому математическому выражению соответствует отношение каких-то реальностей.
Если этого нет, если это не верно -- то нет математики. Это ее главная сущность, главное содержание. Выражать отношения, вот задача математики. Но отношения должны быть между чем-нибудь. Вместо алгебраических а, b и с всегда должно быть можно подставить какую-нибудь реальность. Это азбука всей математики. А, b и c -- это кредитные билеты, они могут быть настоящими, и могут быть фальшивыми, если за ними нет никакой реальности.
"Измерения" играют здесь очень странную роль. Если мы изобразим их алгебраическими знаками а, b и с, то они будут иметь характер фальшивых кредитных билетов. Эти а, b и с нельзя заменить никакими реальными величинами, которые выражали бы отношения измерений.
Обыкновенно изображают измерения степенями, первой, второй и третьей, то есть если линию называют а, то квадрат, стороны которого равны этой линии, называют а2, и куб, стороны которого равны этому квадрату, называют а3.
Это, между прочим, дало основание Хинтону строить теорию тессарактов, тел четырех измерений, а4. Но это чистая беллетристика. Прежде всего потому, что изображение "измерений" степенями совершенно условно. Все степени можно изобразить на линии. Возьмем отрезок а, равный пяти миллиметрам, -- тогда отрезок в 25 миллиметров будет его квадратом, то есть а2; а отрезок в 125 миллиметров будет кубом, то есть а3.
Как же понять, что математика не чувствует измерений, -- то есть что математически нельзя выразить разницу между измерениями?
Это можно понять и объяснить только одним -- именно, что этой разницы не существует.
И действительно, мы знаем, что все измерения в сущности тождественны, то есть каждое из трех измерений можно по очереди рассматривать, как первое, как второе, как третье и наоборот. Это уже ясно доказывает, что измерения не есть математические величины. Все реальные свойства вещи могут быть выражены математически в виде величин, то есть числами, показывающими отношение этих свойств к другим свойствам.