If, as you say, all moments are simultaneous and there is no linear sequence of events, does this not imply that the ‘length’ of a journey is completely irrelevant? If we exist in isolated moments, then the notion that time spent on a journey makes the experience cannot be true because time does not exist. If time is merely an illusion, the time spent on a journey is also an illusion.
My memories never fade. Memories from my supposed past shine as clearly as my present. I remember climbing out of my crib after a nap at 1 ½ years old as clearly as I remember getting out of bed this morning. Aren’t memories supposed to become less clear with time? These moments remain in my head as individual events. I rarely think of them in conjunction with moments that preceded or followed them. The memories in my head feel somewhat like a piece of sedimentary rock—as if these moments have all been compressed together and the connector pieces—the time that I thought held them together—has been blown away with the wind. These thoughts all exist simultaneously in my mind yet they reveal themselves to me one by one.
I think most important was my prevailing feeling of a stronger connection between moments perceived as being separated by time than between moments believed to be connected by time. What I am unclear about, however, is what causes this feeling of connection. Can there be a relationship between these moments? Not in the sense of a linear connection, but rather a feeling of empathy between them. To a certain extent, I think there is a subconscious awareness that there are these other moments occurring simultaneously and that there can be an acknowledgement between moments that are connected by subject matter.
If all moments are simultaneous, I am concurrently hearing the Christopher Robin poem being read, watching the Prince and Princess of Wales on the balcony, and standing in front of the Palace myself. My conscious mind feeds them to me in a linear sequence strung out with a bunch of other moments in an illusion of a continuous flow of action. While I am being read to, however, my subconscious is aware that I really am in front of Buckingham Palace and so a sense of really being there is brought to the Christopher Robin reading or to the Royal Wedding viewing.
This awareness that this other moment is occurring out there right now has struck me at many times. Sometimes it’s when I’m reading a book, other times I’m walking down the street listening to music. Always, however, there is the feeling that I am somewhat connected to that other moment and I can almost feel there is the chance of stepping out of this moment and into another. It is the knowledge that there is another possibility to this moment.
To a certain extent, I often feel as if we are moving towards a timeless existence. The increasing usage of the computer by people on an everyday basis is one factor heading us in this direction. At any moment, without any thought to time, we can shop on our computers, chat, read newspapers, research, do our banking, etc. Also, more and more we are creating environments in which timelessness is the objectivity. Nowhere is this more obvious than in the twentieth-century environments of the department store, the amusement park and the casino. The goal is one dream-like moment, where there is no beginning and no end—no time.
Reading these comments again three months after they came, they strike me as often very close to my position. Incidentally, I address the original Gretchen’s questions (Glaubst du an Gott? Wie halt’s du es mit der Religion?) in the Epilogue.
Note for physicists (p. 18): Space plays two roles in Newtonian physics: it binds its contents together to form the plurality within the unity mentioned in this section (the separations between N objects in Euclidean space are constrained by both inequalities and algebraic relations, which give expression to this unity) and if defines positions at non-coincident times. In the type of physics I am advocating, only the first property is used, as will become clear in Part 3.
In relativity theory, the construction of ‘three-dimensional’ snapshots from two-dimensional photographs is greatly (but not insuperably) complicated by the fact that light travels at finite speed, so that objects are no longer where they seem to be. Readers familiar with relativity theory and concerned that my concept of a Now seems very non-relativistic are asked to defer judgment until Part 3. Einstein did not abolish Nows, he simply made them relative.
Laws and Initial Conditions (p. 22) Although Newton’s and Einstein’s laws work equally well in both time directions, there is one known phenomenon in quantum physics that seems to determine a direction of time at a truly fundamental level. It is observed in the decay of particles called kaons. Paul Davies discusses this phenomenon in some detail in his About Time. Most authors are agreed that this phenomenon does not seem capable of explaining the pronounced directionality of temporal processes, which is one of my main concerns in this book, but it is probably very important in other respects and may provide evidence that time really does exist as an autonomous governing factor in the universe. However, the evidence that it defines a direction in time is indirect, being based on something called the TCP theorem. Although this is most important in modern physics, what form if any it will take in the as yet non-existent theory of quantum gravity is not at all clear.
CHAPTER 2: TIME CAPSULES
The Physical World and Consciousness (1) (p. 26) There is a clear and detailed account of Boltzmann’s ideas in Huw Price’s book listed in Further Reading.
(2) (p. 27) It is worth quoting here two passages from Boltzmann himself. In 1895 he published (in perfect English—I wonder if he had assistance) a paper in Nature with the title ‘On certain questions of the theory of gases’. It ends with a truly remarkable and concise statement of what much later became known as the anthropic principle. This expression was coined in 1970 by the English relativist Brandon Carter (who had earlier made important discoveries about the physics of black holes in the period leading up to Hawking’s discovery that they can evaporate). The anthropic principle, which gained widespread attention initially through the book The Anthropic Cosmological Principle by John Barrow and Frank Tipler, expresses the idea that any universe in which intelligent life exists must have special and unexpected (from a purely statistical viewpoint) properties, since otherwise the intelligent life that observes these properties could not exist. Therefore we should not be surprised to find ourselves in a universe that does have special and remarkable properties.
In the following passage, the summits of the H curve to which Boltzmann refers correspond to states with very low entropy and high order. Note that Boltzmann credits his assistant with the idea.
1 will conclude this paper with an idea of my old assistant, Dr. Schuetz.
We assume that the whole universe is, and rests for ever, in thermal equilibrium. The probability that one (only one) part of the universe is in a certain state, is the smaller the further this state is from thermal equilibrium; but this probability is greater, the greater the universe itself. If we assume the universe great enough we can make the probability of one relatively small part being in any given state (however far from the state of thermal equilibrium), as great as we please. We can also make the probability great that, though the whole universe is in thermal equilibrium, our world is in its present state. It may be sayd [sic] that the world is so far from thermal equilibrium that we cannot imagine the improbability of such a state. But can we imagine, on the other side, how small a part of the whole universe this world is? Assuming the universe great enough, the probability that such a small part of it as our world should be in its present state, is no longer small.