Выбрать главу

It is hard to know where to begin in criticizing the inductivist conception of science — it is so profoundly false in so many different ways. Perhaps the worst flaw, from my point of view, is the sheer non sequitur that a generalized prediction is tantamount to a new theory. Like all scientific theories of any depth, the theory that there are parallel universes simply does not have the form of a generalization from the observations. Did we observe first one universe, then a second and a third, and then induce that there are trillions of them? Was the generalization that planets will ‘wander’ round the sky in one pattern rather than another, equivalent to the theory that planets are worlds, in orbit round the Sun, and that the Earth is one of them? It is also not true that repeating our observations is the way in which we become convinced of scientific theories. As I have said, theories are explanations, not merely predictions. If one does not accept a proposed explanation of a set of observations, making the observations over and over again is seldom the remedy. Still less can it help us to create a satisfactory explanation when we cannot think of one at all.

FIGURE 3.1 The inductivist scheme.

Furthermore, even mere predictions can never be justified by observational evidence, as Bertrand Russell illustrated in his story of the chicken. (To avoid any possible misunderstanding, let me stress that this was a metaphorical, anthropomorphic chicken, representing a human being trying to understand the regularities of the universe.) The chicken noticed that the farmer came every day to feed it. It predicted that the farmer would continue to bring food every day. Inductivists think that the chicken had ‘extrapolated’ its observations into a theory, and that each feeding time added justification to that theory. Then one day the farmer came and wrung the chicken’s neck. The disappointment experienced by Russell’s chicken has also been experienced by trillions of other chickens. This inductively justifies the conclusion that induction cannot justify any conclusions!

However, this line of criticism lets inductivism off far too lightly. It does illustrate the fact that repeated observations cannot justify theories, but in doing so it entirely misses (or rather, accepts) a more basic misconception: namely, that the inductive extrapolation of observations to form new theories is even possible. In fact, it is impossible to extrapolate observations unless one has already placed them within an explanatory framework. For example, in order to ‘induce’ its false prediction, Russell’s chicken must first have had in mind a false explanation of the farmer’s behaviour. Perhaps it guessed that the farmer harboured benevolent feelings towards chickens. Had it guessed a different explanation — that the farmer was trying to fatten the chickens up for slaughter, for instance — it would have ‘extrapolated’ the behaviour differently. Suppose that one day the farmer starts bringing the chickens more food than usual. How one extrapolates this new set of observations to predict the farmer’s future behaviour depends entirely on how one explains it. According to the benevolent-farmer theory, it is evidence that the farmer’s benevolence towards chickens has increased, and that therefore the chickens have even less to worry about than before. But according to the fattening-up theory, the behaviour is ominous — it is evidence that slaughter is imminent.

The fact that the same observational evidence can be ‘extrapolated’ to give two diametrically opposite predictions according to which explanation one adopts, and cannot justify either of them, is not some accidental limitation of the farmyard environment: it is true of all observational evidence under all circumstances. Observations could not possibly play either of the roles assigned to them in the inductivist scheme, even in respect of mere predictions, let alone genuine explanatory theories. Admittedly, inductivism is based on the common-sense theory of the growth of knowledge — that we learn from experience — and historically it was associated with the liberation of science from dogma and tyranny. But if we want to understand the true nature of knowledge, and its place in the fabric of reality, we must face up to the fact that inductivism is false, root and branch. No scientific reasoning, and indeed no successful reasoning of any kind, has ever fitted the inductivist description.

What, then, is the pattern of scientific reasoning and discovery? We have seen that inductivism and all other prediction-centred theories of knowledge are based on a misconception. What we need is an explanation-centred theory of knowledge: a theory of how explanations come into being and how they are justified; a theory of how, why and when we should allow our perceptions to change our world-view. Once we have such a theory, we need no separate theory of predictions. For, given an explanation of some observable phenomenon, it is no mystery how one obtains predictions. And if one has justified an explanation, then any predictions derived from that explanation are automatically justified too.

Fortunately, the prevailing theory of scientific knowledge, which in its modern form is due largely to the philosopher Karl Popper (and which is one of my four ‘main strands’ of explanation of the fabric of reality), can indeed be regarded as a theory of explanations in this sense. It regards science as a problem-solving process. Inductivism regards the catalogue of our past observations as a sort of skeletal theory, supposing that science is all about filling in the gaps in that theory by interpolation and extrapolation. Problem-solving does begin with an inadequate theory — but not with the notional ‘theory’ consisting of past observations. It begins with our best existing theories. When some of those theories seem inadequate to us, and we want new ones, that is what constitutes a problem. Thus, contrary to the inductivist scheme shown in Figure 3.1, scientific discovery need not begin with observational evidence. But it does always begin with a problem. By a ‘problem’ I do not necessarily mean a practical emergency, or a source of anxiety. I just mean a set of ideas that seems inadequate and worth trying to improve. The existing explanation may seem too glib, or too laboured; it may seem unnecessarily narrow, or unrealistically ambitious. One may glimpse a possible unification with other ideas. Or a satisfactory explanation in one field may appear to be irreconcilable with an equally satisfactory explanation in another. Or it may be that there have been some surprising observations — such as the wandering of planets — which existing theories did not predict and cannot explain.

This last type of problem resembles stage 1 of the inductivist scheme, but only superficially. For an unexpected observation never initiates a scientific discovery unless the pre-existing theories already contain the seeds of the problem. For example, clouds wander even more than planets do. This unpredictable wandering was presumably familiar long before planets were discovered. Moreover, predicting the weather would always have been valuable to farmers, seafarers and soldiers, so there would always have been an incentive to theorize about how clouds move. Yet it was not meteorology that blazed the trail for modern science, but astronomy. Observational evidence about meteorology was far more readily available than in astronomy, but no one paid much attention to it, and no one induced any theories from it about cold fronts or anticyclones. The history of science was not crowded with disputes, dogmas, heresies, speculations and elaborate theories about the nature of clouds and their motion. Why? Because under the established explanatory structure for weather, it was perfectly comprehensible that cloud motion should be unpredictable. Common sense suggests that clouds move with the wind. When they drift in other directions, it is reasonable to surmise that the wind can be different at different altitudes, and is rather unpredictable, and so it is easy to conclude that there is no more to be explained. Some people, no doubt, took this view about planets, and assumed that they were just glowing objects on the celestial sphere, blown about by high-altitude winds, or perhaps moved by angels, and that there was no more to be explained. But others were not satisfied with that, and guessed that there were deeper explanations behind the wandering of planets. So they searched for such explanations, and found them. At various times in the history of astronomy there appeared to be a mass of unexplained observational evidence; at other times only a scintilla, or none at all. But always, if people had chosen what to theorize about according to the cumulative number of observations of particular phenomena, they would have chosen clouds rather than planets. Yet they chose planets, and for diverse reasons. Some reasons depended on preconceptions about how cosmology ought to be, or on arguments advanced by ancient philosophers, or on mystical numerology. Some were based on the physics of the day, others on mathematics or geometry. Some have turned out to have objective merit, others not. But every one of them amounted to this: it seemed to someone that the existing explanations could and should be improved upon.