One solves a problem by finding new or amended theories, containing explanations which do not have the deficiencies, but do retain the merits, of existing explanations (Figure 3.2). Thus, after a problem presents itself (stage 1), the next stage always involves conjecture: proposing new theories, or modifying or reinterpreting old ones, in the hope of solving the problem (stage 2). The conjectures are then criticized which, if the criticism is rational, entails examining and comparing them to see which offers the best explanations, according to the criteria inherent in the problem (stage 3). When a conjectured theory fails to survive criticism — that is, when it appears to offer worse explanations than other theories do — it is abandoned. If we find ourselves abandoning one of our originally held theories in favour of one of the newly proposed ones (stage 4), we tentatively deem our problem-solving enterprise to have made progress. I say ‘tentatively’, because subsequent problem-solving will probably involve altering or replacing even these new, apparently satisfactory theories, and sometimes even resurrecting some of the apparently unsatisfactory ones. Thus the solution, however good, is not the end of the story: it is a starting-point for the next problem-solving process (stage 5). This illustrates another of the misconceptions behind inductivism. In science the object of the exercise is not to find a theory that will, or is likely to, be deemed true for ever; it is to find the best theory available now, and if possible to improve on all available theories. A scientific argument is intended to persuade us that a given explanation is the best one available. It does not and could not say anything about how that explanation will fare when, in the future, it is subjected to new types of criticism and compared with explanations that have yet to be invented. A good explanation may make good predictions about the future, but the one thing that no explanation can even begin to predict is the content or quality of its own future rivals.
FIGURE 3.2 The problem-solving process.
What I have described so far applies to all problem-solving, whatever the subject-matter or techniques of rational criticism that are involved. Scientific problem-solving always includes a particular method of rational criticism, namely experimental testing. Where two or more rival theories make conflicting predictions about the outcome of an experiment, the experiment is performed and the theory or theories that made false predictions are abandoned. The very construction of scientific conjectures is focused on finding explanations that have experimentally testable predictions. Ideally we are always seeking crucial experimental tests — experiments whose outcomes, whatever they are, will falsify one or more of the contending theories. This process is illustrated in Figure 3.3. Whether or not observations were involved in the instigating problem (stage 1), and whether or not (in stage 2) the contending theories were specifically designed to be tested experimentally, it is in this critical phase of scientific discovery (stage 3) that experimental tests play their decisive and characteristic role. That role is to render some of the contending theories unsatisfactory by revealing that their explanations lead to false predictions. Here I must mention an asymmetry which is important in the philosophy and methodology of science: the asymmetry between experimental refutation and experimental confirmation. Whereas an incorrect prediction automatically renders the underlying explanation unsatisfactory, a correct prediction says nothing at all about the underlying explanation. Shoddy explanations that yield correct predictions are two a penny, as UFO enthusiasts, conspiracy-theorists and pseudo-scientists of every variety should (but never do) bear in mind.
If a theory about observable events is untestable — that is, if no possible observation would rule it out — then it cannot by itself explain why those events happen in the way they are observed to and not in some other way. For example, the ‘angel’ theory of planetary motion is untestable because no matter how planets moved, that motion could be attributed to angels; therefore the angel theory cannot explain the particular motions that we see, unless it is supplemented by an independent theory of how angels move. That is why there is a methodological rule in science which says that once an experimentally testable theory has passed the appropriate tests, any less testable rival theories about the same phenomena are summarily rejected, for their explanations are bound to be inferior. This rule is often cited as distinguishing science from other types of knowledge-creation. But if we take the view that science is about explanations, we see that this rule is really a special case of something that applies naturally to all problem-solving: theories that are capable of giving more detailed explanations are automatically preferred. They are preferred for two reasons. One is that a theory that ‘sticks its neck out’ by being more specific about more phenomena opens up itself and its rivals to more forms of criticism, and therefore has more chance of taking the problem-solving process forward. The second is simply that, if such a theory survives the criticism, it leaves less unexplained — which is the object of the exercise.
FIGURE 3.3 The course of scientific discovery.
I have already remarked that even in science most criticism does not consist of experimental testing. That is because most scientific criticism is directed not at a theory’s predictions but directly at the underlying explanations. Testing the predictions is just an indirect way (albeit an exceptionally powerful one, when available) of testing the explanations. In Chapter 1, I gave the example of the ‘grass cure’ — the theory that eating a kilogram of grass is a cure for the common cold. That theory and an infinity of others of the same ilk are readily testable. But we can criticize and reject them without bothering to do any experiments, purely on the grounds that they explain no more than the prevailing theories which they contradict, yet make new, unexplained assertions.