Выбрать главу

Я использую этот эпитет – «опасный» – абсолютно сознательно. Три взрывных научных идеи[14] – атом, байт, ген – с грохотом пронеслись через все XX столетие, разделив его на три неравных отрезка. Предпосылки каждой из этих идей сложились еще в XIX веке, но ослепительный триумф пришелся на XX. Изначально все они представляли собой довольно абстрактные научные концепции, но затем разрослись, окрепли и, проникнув в многочисленные сферы нашей жизни, сейчас меняют культуру, общество, политику и язык.

Но самое важное сходство этих трех понятий, безусловно, концептуальное: все это минимальные единицы – строительные блоки, базовые организационные детали – какого-то более крупного целого. Атом – единица материи; байт (или бит)[15] – цифровой информации[16]; ген – наследственности и информации биологической.

Почему же общее свойство этих единиц – дальнейшая неделимость – наградило их концепции таким огромным потенциалом и могуществом? Простой ответ состоит в том, что материя, информация и биологические объекты по своей природе иерархичны, и понимание строения и функций самой маленькой части необходимо для понимания целого. Строка поэта Уоллеса Стивенса «В сумме частей – лишь части»[17] отсылает нас к глубинной тайне структуры языка: понять смысл предложения можно, лишь поняв смысл всех его слов, хотя целое предложение несет больше смысла, чем отдельные слова. То же и с генами. Организм – нечто гораздо большее, чем его гены, но чтобы по-настоящему понять, как он работает, нужно разобраться в работе его генов. Когда голландский ученый Хуго де Фриз в 1890-х занялся работой над концепцией гена, он сразу почувствовал, что эта теория перевернет наше представление о природе. «Весь органический мир[18] – результат влияния относительно небольшого числа факторов в огромном количестве разных комбинаций. <…> Как физика и химия обращаются к молекулам и атомам, так и биологические науки должны обращаться к этим единицам [генам], проникать в их природу, чтобы объяснять <…> явления мира живого».

Концепции атома, бита (байта) и гена дают принципиально новое понимание соответствующих систем с научной и технологической точек зрения. Невозможно понять поведение материи – почему золото блестит, почему смесь водорода и кислорода взрывается – без знания ее атомной природы. Точно так же нельзя постичь тонкости работы компьютерных систем – суть алгоритмов, механизмы хранения или повреждения данных – без осмысления структурной анатомии цифровой информации. «Алхимия не могла стать химией,[19] пока не были открыты базовые единицы вещества», – писал один ученый в XIX веке. И, как я буду доказывать на страницах этой книги, точно так же невозможно понять организменную или клеточную биологию, эволюцию, человеческие патологии, поведение, характер, расу, идентичность или судьбу, не усвоив первым делом концепцию гена.

Здесь мы подходим ко второй теме этой книги. Знание об атомах было необходимой предпосылкой для обретения способности манипулировать материей (и – в итоге – для создания атомной бомбы). Осмысление принципов работы генов позволило нам невероятно ловко и эффективно манипулировать организмами. Подлинная сущность генетического кодирования оказалась поразительно простой: всего одна молекула, переносящая наследственную информацию, и один универсальный код. «То, что фундаментальные аспекты наследственности[20] оказались чрезвычайно простыми, дает нам основания надеяться на всеобъемлющее познание природы, – писал Томас Морган, авторитетный генетик. – Ее пресловутая непостижимость в очередной раз оказалась иллюзией».

Наше понимание биологии генов достигло такого уровня сложности, такой глубины, что теперь мы можем изучать и изменять гены не только в пробирке, но и в их естественной среде – человеческих клетках. Гены расположены на хромосомах – длинных нитевидных структурах, которые находятся внутри клетки. Хромосомы могут нести в общей сложности десятки тысяч генов, выстроенных цепочками[21]. Всего у человека 46 хромосом – по 23 от каждого родителя. Полный набор генетических инструкций, который несет организм, называется «гено́м» (можно представить себе его как энциклопедию всех генов с примечаниями, комментариями, указаниями и ссылками). Человеческий геном содержит около 21–23 тысячи генов[22] – главных инструкций о том, как строить, чинить и поддерживать организм. За последние 20 лет генетические технологии настолько продвинулись, что теперь мы можем детально разобраться в пространственно-временных аспектах работы некоторых генов – понять, как они обеспечивают эти сложнейшие функции организма. А еще – в некоторых случаях – мы можем намеренно вносить в гены изменения, влияющие на их работу, и тем самым изменять состояние человека, его физиологию и психологию.

вернуться

14

Три взрывных научных идеи: Bauer M. W. Atoms, Bytes and Genes: Public Resistance and Techno-Scientific Responses. NY: Routledge, 2015.

вернуться

15

Если бит – минимальная единица измерения информации (0/1; да/нет), то байт, в типичном случае состоящий из 8 битов, – минимальная единица хранения и обработки цифровой информации.

вернуться

16

Под битом (байтом) я подразумеваю довольно сложное понятие, которое не исчерпывается определением стандартной единицы компьютерной архитектуры. Я опираюсь на более общую и сложнее постижимую концепцию, согласно которой вся сложная информация материального мира может быть описана или закодирована в виде суммы дискретных частей, содержание которых ограничивается лишь состояниями «вкл/выкл» («да/нет»). Полнее эта концепция и ее влияние на естественные науки и философию освещается в книге Джеймса Глика (Глик Дж. Информация. История. Теория. Поток. М.: АСТ: Corpus, 2016). Выразительнее всего эту теорию представил физик Джон Уилер в 1990-х: «Каждая частица, каждое силовое поле, даже сам пространственно-временной континуум формирует свою функцию, свой смысл и, в конечном счете, само свое существование <…> из ответов на вопросы вида „да или нет“, из бинарных альтернатив, из битов; <…> кратко говоря, все физические сущности имеют информационно-теоретическое происхождение». Бит (или байт) – понятие, придуманное человеком, но определяющая его теория цифровой информации представляет собой красивый закон природы. – Прим. автора.

вернуться

17

«В сумме частей – лишь части»: Vendler H. Wallace Stevens: Words Chosen out of Desire. Cambridge, MA: Harvard University Press, 1984.

вернуться

18

«Весь органический мир»: de Vries H. Intracellular Pangenesis: Including a Paper on Fertilization and Hybridization. Chicago: Open Court, 1910.

вернуться

19

«Алхимия не могла стать химией»: Gilbert A. W. The Science of Genetics. Journal of Heredity. 1914; 6 (5): 239.

вернуться

20

«То, что фундаментальные аспекты наследственности»: Morgan T. H. The Physical Basis of Heredity. Philadelphia: J. B. Lippincott, 1919.

вернуться

21

У бактерий хромосомы бывают кольцевыми. – Прим. автора.

вернуться

22

По данным 2021 года, гаплоидный набор человеческих хромосом несет примерно 20 тысяч генов, кодирующих белки, и не меньше генов РНК, не транслирующихся в белки.