Выбрать главу

Alchemy is more interesting. It is often said to be an early forerunner of chemistry, although the principles underlying chemistry largely derive from other sources. The alchemists played around with apparatus that led to useful chemists' gadgets like retorts and flasks and they discovered that interesting things happen when you heat certain substances or combine them together. The alchemists' big discoveries were salt ammoniac (ammonium chloride), which can be made to react with metals, and the mineral acids - nitric, sulphuric and hydrochloric.

The big goal of alchemy would have been much bigger if they ever achieved it: the Elixir of Life, the source of immortality. The Chinese alchemists described this long-sought substance as

'liquid gold'. The narrative thread here is clear: gold is the noble metal, incorruptible, ageless. So anyone who could somehow incorporate gold into his body would also become incorruptible and ageless. The nobility shows up differently: the noble metal is reserved for the 'noble' humans: emperors, royalty, the people on top of the heap. Much good did this do them. According to the Chinese scholar Joseph Needham, several Chinese emperors probably died of elixir poisoning.

Since arsenic and mercury were common constituents of supposed elixirs, this is hardly a surprise. And it is all too plausible that a mystic quest for immortality would shorten life, not prolong it.

In Europe, from about 1300 onwards, alchemy had three main objectives. The Elixir of Life was still one, and a second was finding cures for various diseases. The alchemical search for medicines eventually led somewhere useful. The key figure here is Phillipus Aureolus Theophrastus Bombastus19 von Hohenheim, mercifully known as 'Paracelsus', who lived from

1493 to 1541.

Paracelsus was a Swiss physician whose interest in alchemy led him to invent chemotherapy. He placed great store in the occult. As a student aged 14 he wandered from one European university to another, in search of great teachers, but we can deduce from what he wrote about the experience, somewhat later, that he was disappointed. He wondered why 'the high colleges managed to produce so many high asses', and clearly wasn't the kind of student to endear himself to his teachers. 'The universities,' he wrote, 'do not teach all things. So a doctor must seek out old wives, gypsies, sorcerers, wandering tribes, old robbers, and such outlaws and take lessons from them.' He would have had a high old time on Discworld, but would have learned a lot.

After ten years' wandering, he returned home in 1524 and became lecturer in medicine at the university of Basel. In 1527 he publicly burned the classic books of earlier physicians, the Arab Avicenna and the Greek Galen. Paracelsus cared not a whit for authority. Indeed his assumed name, 'para-Celsus', means 'above Celsus', and Celsus was a leading Roman doctor of the first century.

He was arrogant and mystical. His saving grace was that he was also very bright. He placed great importance on using nature's own powers of healing. For example, letting wounds drain instead of padding them with moss or dried dung. He discovered that mercury was an effective treatment for syphilis, and his clinical description of that sexually transmitted disease was the best available.

The main objective for most alchemists was far more selfish, sights were set on just one thing: transmuting base metals like lead into gold. Again, their belief that this was possible rested on a story. They knew from their experiments that sal ammoniac and other substances could change the colour of metals, so the story 'Metals can be transmuted' gained ground. Why, then, should it not be possible to start with lead, add the right substance, and end up with gold? The story seemed compelling; all that they lacked was the right substance. They called it the Philosopher's Stone.

The search for the Philosopher's Stone, or rumours that it had been found, got several alchemists into trouble. Noble gold was the prerogative of the nobility. While the various kings and princes wouldn't have minded getting their hands on an inexhaustible supply of gold, they didn't want their rivals to beat them to it. Even searching for the Philosopher's Stone could be considered subversive, just as searching for a cheap source of renewable energy now is apparently considered subversive by oil corporations and nuclear energy companies. In 1595 Dee’s companion Edward Kelley was imprisoned by Rudolf II and died trying to escape, and in 1603

Christian II of Saxony imprisoned and tortured the Scottish alchemist Alexander Seton. A

dangerous thing, a clever man.

The story of the Philosopher's Stone never reached its climax, alchemists never did turn lead into gold. But the story took a long time to die. Even around 1700, Isaac Newton still thought it was worth having a go, and the idea of turning lead into gold by chemical means was finally killed off only in the nineteenth century. Nuclear reactions, mind you, are another matter: the transmutation can be done, but is wildly uneconomic. And unless you're very careful, the gold is radioactive (although, of course, this will keep the money circulating quickly, and we might see a sudden upsurge of philanthropy). How did we get from alchemy to radioactivity? The pivotal period of Western history was the Renaissance, roughly spanning the fifteenth and sixteenth centuries, when ideas imported from the Arab world collided with Greek philosophy and mathematics, and Roman artisanship and engineering, leading to a sudden flowering of the arts and the birth of what we now call science. During the Renaissance, we learned to tell new stories about ourselves and the world. And those stories changed both.

In order to understand how this happened, we must come to grips with the real Renaissance mentality, not the popular view of a 'Renaissance man'. By that phrase, we mean a person with expertise in many areas -like Roundworld's Leonardo da Vinci, who bears a suspicious resemblance to the Disc's Leonard of Quirm. We use this phrase because we contrast such people with what we call a 'well-educated' person today.

In medieval Europe, and indeed long after that, the aristocracy considered 'education' to mean classical knowledge -the culture of the Greeks -plus a lot of religion, and not much else. The king was expected to be well informed about poetry, drama and philosophy, but he wasn't expected to know about plumbing or brickwork. Some kings did in fact get rather interested in astronomy and science, either out of intellectual interest or the realisation that technology is power, but that wasn't part of the normal royal curriculum.

This view of education implied that the classics were all the validated knowledge that an

'educated' person needed, a view not far from that of many English 'public' schools until quite recently, and of the politicians they have produced. This view of what was needed by the rulers contrasted with what was needed by the children of the peasantry (artisan skills and, lately, the

'three Rs'20).

Neither the classics nor the three Rs formed the basis for the genuine Renaissance man, who sought a fusion of those two worlds. Pointing to the artisan as a source of worldly experience, of knowledge of the material world and its tools such as an alchemist might use, led to a new rapprochement between the classical and the empirical, between intellect and experience. The actions of such men as Dee, even those of the occultist Paracelsus in his medical prescriptions emphasised this distinction, and started the fusion of reason and empiricism that so impresses us today.

As we've said, the word 'Renaissance' refers not just to rebirth, but to a specific rebirth, that of ancient Greek culture. This, however, is a modern view, based on a mistaken view of the Greeks, and of the Renaissance itself. In 'classical' education, no attention is paid to engineering. Of course not. Greek culture ran on pure intellect, poetry an philosophy. They didn't have engineers.