Выбрать главу

There is probably no more of a plan than that in the zebra's brain but it does foresee a little bit of the future and plug memories into present planning. If I stand up now ...

The human is looking at the lioness and the zebra. Even if it's a Homo erectus, we bet it had stories in its head: that lioness will run out, the zebra will startle, the other lioness will go for ...

ah, that young female. Then I can run out there and get in front of the young male; I see myself running at him and hitting him with this stone. Homo sapiens may well have done better from the beginning; his brain was bigger and probably better. He may, from the beginning, have had room for several alternative, thought about 'or' scenarios and probably the 'and' one which goes

'and I will be a big hunter and meet interesting women'. 'If' probably came along later, perhaps with cave paintings, but making predictions put our ancestors way ahead of their predators and their prey.

There has been a variety of suggestions about why our brains suddenly grew to nearly double their previous size, from the need to keep the faces of our social group in mind while gossiping about them, to the need to compete with other hunter-gatherers, to the competitive nature of language and its structuring of the brain so that lying could be successful for the li-ar, but then the li-ee got better at detecting lies. Such escalations all have an attraction to them. They make good stories, ones that we can easily imagine, filling in the background just as we do with hearing sentences or enjoying pictures. That doesn't make them true, of course, just as our attraction to the supposed seashore phase of our history doesn't make 'aquatic apes' true either.

The stories serve as placeholders for whatever the real pressures were: the meta-explanation of why our brain growth took off is that competitive advantage was to be won by All Of The Above routes, and many more.

Perhaps the human viewer of that wildlife scene is a cameraman for a natural history TV series.

Even a mere 15 years ago, he would have had an Arriflex (or if he was paying for it himself, perhaps just a Bolex H16) 16mm film camera with a very precious 800 feet (260 metres) of film loaded, and perhaps another dozen film packs in his rucksack (800 feet gives about 40 minutes of filming: if you're very good, or very lucky, five minutes of useful stuff). Now he has a video camera that would have seemed miraculous then, which can reuse and reuse a length of tape until it's full of five-minute sequences, end to end. All the things he wished for, then, are in the apparatus in his hand now: it stays in focus, it compensates for a bit of wobble, it goes down to unbelievably low light levels (for those of us who grew up with photographic film) and it zooms over a range much wider than we ever had before.

It's magic, in fact.

And in his head are a dozen alternative scenarios for the lions and zebras, which he'll flick to instantly as the animals act to constrain their futures. He's actually thinking about other things altogether, letting the experienced professional part of his brain do the work while he daydreams

('I'll get an award for this and meet interesting women'). It's like driving on a quiet motorway: a lot of the thinking has been taken out of it.

Our ancestors honed that ability, to consider alternative scenarios. And within any of those scenarios, the ability to make a story of what was happening was a very powerful way to remember it and to communicate it. And, particularly, to employ it as a parable, to direct your future action or that of your children. Human beings need a very long time to get that brain upand- running, at least twice as long as their brother and sister chimpanzees. That is why threeyear- old chimps are nearly adult in chimp behaviour, and can do some of the mental tricks of six- or seven-year-old children.

But the young chimps don't hear stories. Our children have been hearing stories since they recognised any words at all, and by three years old they are making up their own stories about what is happening around them. We are all impressed by their vocabulary skills, and by their acquisition of syntax and semantics; but we should also note how good they are at making narratives out of events. From about five years old, they get their parents to do things for them by placing those things in narrative context. And most of their games with peers have a context, within which stories are played out. The context they create is just like that of the animal and fairy stories we tell them. The parents don't instruct the child how to do this, nor do the children have to elicit the 'right' storytelling behaviours from their parents. This is an evolutionary complicity. It seems very natural -after all, we are Pan narrans -that we tell stories to children, and that children and parents enjoy the activity. We learn about 'narrativium' very early in our development, and we use it and promote it for the whole of our lives.

Human development is a complex, recursive behaviour. It is not simply reading out DNA

'blueprints' and making another working part (contrary to the new folk-biology of genes). To show you how truly remarkable our development is, despite seeming so simple and so natural, let's have a look at some earlier parent-child behaviour.

Keep in mind a distinction that is being imported into more and more scientific thinking, that between 'complicated' and 'complex'. 'Complicated' means a whole set of simple things working together to produce some effect, like a clock or an automobile: each of the components -brakes, engine, body-shell, steering - contributes to what the car does by doing its own thing, pretty well.

There are some interactions, to be sure. When the engine is turning fast, it has a gyroscopic effect that makes the steering behave differently, and the gearbox affects how fast the engine is going at a particular car speed. To see human development as a kind of car assembly process, with the successive genetic blueprints 'defining' each new bit as we add them, is to see us as only complicated.

A car being driven, however, is a complex system: each action it takes helps determine future actions and is dependent upon previous actions. It changes the rules for itself as it goes. So does a garden. As plants grow, they take nutrients from the soil, and this affects what else can grow there later. But they also rot down, adding nutrients, providing habitat for insects, grubs, hedgehogs ... A mature garden has a very different dynamic from that of a new plot on a housing estate.

Similarly, we change our own rules as we develop.

There are always several superficially different, non-overlapping descriptions of any complex system, and one way to deal with a complex system is to collect these descriptions and choose appropriate ones for different ways of influencing its behaviour.46 An amusingly simple example can be seen in many French and Swiss railway stations and airports: a sign that says LOST PROPERTY OBJETS TROUVES

The French means 'found objects'. But we don't think that this is a case of the English losing objects and the French finding them. It's two descriptions of the same situation.

Now look at a baby in a pram, throwing its rattle out on to the pavement for Mummy, or child- minder, or indeed passers-by, to retrieve. We probably think that the child is not coordinated enough yet to keep its rattle within reach: we think 'Lost Property'. Then we see Mummy give the rattle back to the child, to be rewarded with a smile, and we think 'No, it's more subtle: there is a baby teaching its mother to fetch, just as we adults do with dogs'. Now we think 'Objets Trouves'. The baby's smile is itself part of a complex, reciprocal system of rewards that was set up long ago in evolution. We watch babies copy' the smiles of parents -but no, it can't be copying, because even blind babies smile. Anyway, copying would be immensely difficult: from anywhere on the retina, the undeveloped brain must 'sort out' a face with a smile, then work out which of its own muscles to work to produce that effect, without a mirror. No, it's a pre-wired reflex. Babies reflexively react to cooing sounds and to pre-wired recognition of smiles; an upwardly-curved line on a piece of paper works just as well. The 'smile' icon rewards the adult, who then tries hard to keep the baby doing it. The complex interactions proceed, changing both participants progressively.